咨询与建议

限定检索结果

文献类型

  • 6,723 篇 会议
  • 5,221 篇 期刊文献
  • 148 篇 学位论文
  • 9 篇 科技报告
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 12,110 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,354 篇 工学
    • 7,700 篇 计算机科学与技术...
    • 2,349 篇 软件工程
    • 2,050 篇 电气工程
    • 1,139 篇 控制科学与工程
    • 624 篇 信息与通信工程
    • 457 篇 机械工程
    • 326 篇 电子科学与技术(可...
    • 302 篇 生物工程
    • 269 篇 动力工程及工程热...
    • 251 篇 生物医学工程(可授...
    • 240 篇 材料科学与工程(可...
    • 228 篇 石油与天然气工程
    • 227 篇 化学工程与技术
    • 217 篇 土木工程
    • 193 篇 力学(可授工学、理...
    • 149 篇 仪器科学与技术
    • 143 篇 航空宇航科学与技...
    • 134 篇 环境科学与工程(可...
  • 4,737 篇 理学
    • 3,330 篇 数学
    • 835 篇 生物学
    • 678 篇 物理学
    • 485 篇 统计学(可授理学、...
    • 465 篇 系统科学
    • 232 篇 化学
  • 1,942 篇 管理学
    • 1,685 篇 管理科学与工程(可...
    • 438 篇 工商管理
    • 251 篇 图书情报与档案管...
  • 366 篇 医学
    • 220 篇 临床医学
    • 202 篇 基础医学(可授医学...
  • 232 篇 经济学
    • 201 篇 应用经济学
  • 216 篇 农学
  • 135 篇 法学
  • 34 篇 教育学
  • 11 篇 文学
  • 11 篇 艺术学
  • 10 篇 军事学
  • 8 篇 哲学
  • 1 篇 历史学

主题

  • 12,110 篇 evolutionary alg...
  • 604 篇 optimization
  • 534 篇 multi-objective ...
  • 341 篇 genetic algorith...
  • 300 篇 neural networks
  • 275 篇 differential evo...
  • 192 篇 machine learning
  • 172 篇 particle swarm o...
  • 165 篇 multiobjective o...
  • 144 篇 genetic programm...
  • 132 篇 artificial intel...
  • 110 篇 swarm intelligen...
  • 108 篇 metaheuristics
  • 105 篇 genetic algorith...
  • 95 篇 data mining
  • 91 篇 algorithm develo...
  • 86 篇 image processing
  • 81 篇 global optimizat...
  • 80 篇 deep learning
  • 79 篇 artificial neura...

机构

  • 59 篇 brno university ...
  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 28 篇 nanyang technol ...
  • 28 篇 univ granada dep...
  • 27 篇 univ birmingham ...
  • 27 篇 charles universi...
  • 22 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 univ adelaide sc...
  • 17 篇 china univ geosc...
  • 17 篇 de montfort univ...
  • 16 篇 southern univ sc...
  • 16 篇 natl univ def te...
  • 16 篇 univ cordoba dep...
  • 15 篇 king fahd univ p...
  • 15 篇 univ york dept e...
  • 15 篇 shenzhen univ co...
  • 14 篇 michigan state u...
  • 14 篇 max planck inst ...

作者

  • 116 篇 neumann frank
  • 89 篇 yao xin
  • 68 篇 deb kalyanmoy
  • 63 篇 zelinka ivan
  • 53 篇 yang shengxiang
  • 37 篇 neumann aneta
  • 37 篇 jin yaochu
  • 36 篇 zou juan
  • 35 篇 sudholt dirk
  • 32 篇 tang ke
  • 32 篇 coello carlos a....
  • 31 篇 he jun
  • 30 篇 friedrich tobias
  • 30 篇 senkerik roman
  • 28 篇 doerr benjamin
  • 27 篇 schoenauer marc
  • 27 篇 cotta carlos
  • 26 篇 togelius julian
  • 25 篇 wagner markus
  • 25 篇 bossek jakob

语言

  • 11,563 篇 英文
  • 379 篇 其他
  • 119 篇 中文
  • 17 篇 西班牙文
  • 8 篇 日文
  • 8 篇 土耳其文
  • 4 篇 葡萄牙文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
  • 1 篇 斯洛文尼亚文
检索条件"主题词=evolutionary algorithms"
12110 条 记 录,以下是4401-4410 订阅
排序:
A chaotic artificial bee colony algorithm based on lévy search
A chaotic artificial bee colony algorithm based on lévy sea...
收藏 引用
作者: Lin, Shijie Dong, Chen Wang, Zhiqiang Guo, Wenzhong Chen, Zhenyi Ye, Yin College of Mathematics and Computer Science Fuzhou University Fuzhou350116 China Key Laboratory of Information Security of Network Systems Fuzhou350116 China Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350116 China Department of Electrical Engineering University of South Florida TampaFL33620 United States
A Lévy search strategy based chaotic artificial bee colony algorithm (LABC) is proposed in this paper. The chaotic sequence, global optimal mechanism and Lévy flight mechanism were introduced respectively in... 详细信息
来源: 评论
A Novel Mutation and Crossover Operator for Multi-objective Differential Evolution  9th
A Novel Mutation and Crossover Operator for Multi-objective ...
收藏 引用
9th International Symposium on Intelligence Computation and Applications, ISICA 2017
作者: Li, Qingxia Wei, Wenhong Department of Computer City College of Dongguan University of Technology Dongguan523419 China School of Computer Dongguan University of Technology Dongguan523808 China
Differential evolution is a simple evolutionary algorithm by simulating Darwinian evolution principle where the population of individuals are evolved and adapted with some reproduction mechanisms such as mutation, cro... 详细信息
来源: 评论
Enhanced Differential Evolution by Dynamic Selection Framework of Mutation Operator  8
Enhanced Differential Evolution by Dynamic Selection Framewo...
收藏 引用
8th IEEE International Conference on Electronics Information and Emergency Communication, ICEIEC 2018
作者: Dahai, Xia Song, Lin Wei, Gu Caiquan, Xiong Hubei University of Technology Computer School Wuhan China Naval Command College Strategic Teaching and Research Section Nanjing210016 China
Muatation operator is the core operators in differential evolution(DE). Many researchers have proposed various versions of improved muatation operators. Most of them balance the exploration and exploitation in a const... 详细信息
来源: 评论
A hybrid differential evolution and estimation of distribution algorithm for the multi-point dynamic aggregation problem  18
A hybrid differential evolution and estimation of distributi...
收藏 引用
2018 Genetic and evolutionary Computation Conference, GECCO 2018
作者: Hao, Rong Zhang, Jia Xin, Bin Chen, Chen Dou, Lihua School of Automation Beijing Institute of Technology Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing China School of Automation Beijing Institute of Technology State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing China
The multi-point dynamic aggregation (MPDA) is a typical task planning problem. In order to solve the MPDA problem efficiently, a hybrid differential evolution (DE) and estimation of distribution algorithm (EDA) called... 详细信息
来源: 评论
Memetic graph clustering  17
Memetic graph clustering
收藏 引用
17th Symposium on Experimental algorithms, SEA 2018
作者: Biedermann, Sonja Henzinger, Monika Schulz, Christian Schuster, Bernhard University of Vienna Vienna Austria
It is common knowledge that there is no single best strategy for graph clustering, which justifies a plethora of existing approaches. In this paper, we present a general memetic algorithm, VieClus, to tackle the graph... 详细信息
来源: 评论
Evaluating surrogate models for multi-objective influence maximization in social networks  18
Evaluating surrogate models for multi-objective influence ma...
收藏 引用
2018 Genetic and evolutionary Computation Conference, GECCO 2018
作者: Bucur, Doina Iacca, Giovanni Marcelli, Andrea Squillero, Giovanni Tonda, Alberto University of Twente EEMCS Enschede Netherlands University of Trento DISI Povo Trento Italy Politecnico di Torino DAUIN Torino Italy INRA UMR 782 GMPA Thiverval-Grigno France
One of the most relevant problems in social networks is influence maximization, that is the problem of finding the set of the most influential nodes in a network, for a given influence propagation model. As the proble... 详细信息
来源: 评论
Adversarial co-evolution of aack and defense in a segmented computer network environment
Adversarial co-evolution of aack and defense in a segmented ...
收藏 引用
2018 Genetic and evolutionary Computation Conference, GECCO 2018
作者: Hemberg, Erik Zipkin, Joseph R. Skowyra, Richard W. Wagner, Neal O'Reilly, Una-May MIT CSAIL CambridgeMA United States MIT Lincoln Laboratory LexingtonMA United States
In computer security, guidance is slim on how to prioritize or con-gure the many available defensive measures, when guidance is available at all. We show how a competitive co-evolutionary algorithm framework can ident... 详细信息
来源: 评论
Enhanced differential grouping for large scale optimization  10th
Enhanced differential grouping for large scale optimization
收藏 引用
10th International Joint Conference on Computational Intelligence, IJCCI 2018
作者: Meselhi, Mohamed A. Sarker, Ruhul A. Essam, Daryl L. Elsayed, Saber M. School of Engineering and Information Technology University of New South Wales at Canberra Canberra2600 Australia
The curse of dimensionality is considered a main impediment in improving the optimization of large scale problems. An intuitive method to enhance the scalability of evolutionary algorithms is cooperative coevolution. ... 详细信息
来源: 评论
Exploratory landscape analysis using algorithm based sampling  18
Exploratory landscape analysis using algorithm based samplin...
收藏 引用
2018 Genetic and evolutionary Computation Conference, GECCO 2018
作者: He, Yaodong Yuen, Shiu Yin Lou, Yang Department of Electronic Engineering City University of Hong Kong 83 Tat Chee Ave Kowloon Tong Hong Kong
Exploratory landscape analysis techniques are widely used methods for the algorithm selection problem. The existing sampling methods for exploratory landscape analysis are usually designed to sample unbiased candidate... 详细信息
来源: 评论
MTLBO-MS: Modified teaching learning based optimization on multicore system  4
MTLBO-MS: Modified teaching learning based optimization on m...
收藏 引用
4th IEEE International Conference on Recent Advances in Information Technology, RAIT 2018
作者: Balande, Umesh Shrimankar, Deepti Funde, Nitesh Computer Science and Engineering Visvesvaraya National Institute of Technology Nagpur India
Teaching-Learning-Based Optimization (TLBO) algorithm is newly developed nature-inspired algorithm for solving large-scale-global optimization problems. The basic TLBO algorithm is modified using the approach of Diffe... 详细信息
来源: 评论