咨询与建议

限定检索结果

文献类型

  • 6,745 篇 会议
  • 5,277 篇 期刊文献
  • 47 篇 学位论文
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 12,078 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,458 篇 工学
    • 7,798 篇 计算机科学与技术...
    • 2,389 篇 软件工程
    • 2,061 篇 电气工程
    • 1,144 篇 控制科学与工程
    • 631 篇 信息与通信工程
    • 455 篇 机械工程
    • 330 篇 电子科学与技术(可...
    • 304 篇 生物工程
    • 269 篇 动力工程及工程热...
    • 251 篇 生物医学工程(可授...
    • 245 篇 材料科学与工程(可...
    • 231 篇 化学工程与技术
    • 227 篇 石油与天然气工程
    • 216 篇 土木工程
    • 196 篇 力学(可授工学、理...
    • 146 篇 仪器科学与技术
    • 144 篇 航空宇航科学与技...
    • 133 篇 环境科学与工程(可...
  • 4,779 篇 理学
    • 3,353 篇 数学
    • 842 篇 生物学
    • 697 篇 物理学
    • 485 篇 统计学(可授理学、...
    • 464 篇 系统科学
    • 233 篇 化学
  • 1,953 篇 管理学
    • 1,693 篇 管理科学与工程(可...
    • 437 篇 工商管理
    • 255 篇 图书情报与档案管...
  • 367 篇 医学
    • 223 篇 临床医学
    • 203 篇 基础医学(可授医学...
  • 235 篇 经济学
    • 203 篇 应用经济学
  • 218 篇 农学
  • 137 篇 法学
  • 37 篇 教育学
  • 11 篇 文学
  • 11 篇 艺术学
  • 10 篇 军事学
  • 8 篇 哲学
  • 1 篇 历史学

主题

  • 12,078 篇 evolutionary alg...
  • 591 篇 optimization
  • 534 篇 multi-objective ...
  • 329 篇 genetic algorith...
  • 301 篇 neural networks
  • 268 篇 differential evo...
  • 189 篇 machine learning
  • 173 篇 particle swarm o...
  • 165 篇 multiobjective o...
  • 130 篇 genetic programm...
  • 129 篇 artificial intel...
  • 110 篇 swarm intelligen...
  • 105 篇 metaheuristics
  • 101 篇 genetic algorith...
  • 93 篇 data mining
  • 91 篇 algorithm develo...
  • 91 篇 image processing
  • 82 篇 global optimizat...
  • 81 篇 deep learning
  • 81 篇 artificial neura...

机构

  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 28 篇 nanyang technol ...
  • 28 篇 univ granada dep...
  • 27 篇 univ birmingham ...
  • 22 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 china univ geosc...
  • 17 篇 natl univ def te...
  • 17 篇 de montfort univ...
  • 17 篇 univ adelaide sc...
  • 16 篇 southern univ sc...
  • 16 篇 univ cordoba dep...
  • 15 篇 king fahd univ p...
  • 15 篇 univ york dept e...
  • 15 篇 shenzhen univ co...
  • 14 篇 michigan state u...
  • 14 篇 max planck inst ...
  • 14 篇 univ jaen dept c...
  • 13 篇 xidian univ sch ...

作者

  • 117 篇 neumann frank
  • 90 篇 yao xin
  • 68 篇 deb kalyanmoy
  • 64 篇 zelinka ivan
  • 53 篇 yang shengxiang
  • 38 篇 neumann aneta
  • 37 篇 sudholt dirk
  • 36 篇 zou juan
  • 36 篇 jin yaochu
  • 32 篇 tang ke
  • 32 篇 coello carlos a....
  • 31 篇 senkerik roman
  • 30 篇 he jun
  • 30 篇 friedrich tobias
  • 28 篇 doerr benjamin
  • 27 篇 schoenauer marc
  • 27 篇 cotta carlos
  • 26 篇 togelius julian
  • 26 篇 doerr carola
  • 25 篇 sarker ruhul

语言

  • 11,543 篇 英文
  • 382 篇 其他
  • 118 篇 中文
  • 17 篇 西班牙文
  • 7 篇 日文
  • 7 篇 土耳其文
  • 4 篇 葡萄牙文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
  • 1 篇 斯洛文尼亚文
检索条件"主题词=evolutionary algorithms"
12078 条 记 录,以下是4491-4500 订阅
Limited Evaluation evolutionary Optimization of Large Neural Networks
arXiv
收藏 引用
arXiv 2018年
作者: Prellberg, Jonas Kramer, Oliver University of Oldenburg Oldenburg Germany
Stochastic gradient descent is the most prevalent algorithm to train neural networks. However, other approaches such as evolutionary algorithms are also applicable to this task. evolutionary algorithms bring unique tr... 详细信息
来源: 评论
An evolutionary algorithm with crossover and mutation for model-based clustering
arXiv
收藏 引用
arXiv 2018年
作者: McNicholas, Sharon M. McNicholas, Paul D. Ashlock, Daniel A. Department of Mathematics and Statistics McMaster University ON Canada Department of Mathematics and Statistics University of Guelph ON Canada
The expectation-maximization (EM) algorithm is almost ubiquitous for parameter estimation in model-based clustering problems;however, it can become stuck at local maxima, due to its single path, monotonic nature. Rath... 详细信息
来源: 评论
Supervising Unsupervised Learning with evolutionary Algorithm in Deep Neural Network
arXiv
收藏 引用
arXiv 2018年
作者: Inagaki, Takeshi IBM Tokyo Japan
A method to control results of gradient descent unsupervised learning in a deep neural network by using evolutionary algorithm is proposed. To process crossover of unsupervisedly trained models, the algorithm evaluate... 详细信息
来源: 评论
Preselection via one-class classification for evolutionary optimization  18
Preselection via one-class classification for evolutionary o...
收藏 引用
Proceedings of the Genetic and evolutionary Computation Conference Companion
作者: Jinyuan Zhang Aimin Zhou Guixu Zhang East China Normal University Shanghai China
In evolutionary algorithms, a preselection operator aims to choose some promising offspring solutions for a further environmental selection. Most existing preselection operators are based on fitness values, surrogate ... 详细信息
来源: 评论
A Comparison of the taguchi method and evolutionary optimization in multivariate testing
arXiv
收藏 引用
arXiv 2018年
作者: Jiang, Jingbo Legrand, Diego Severn, Robert Miikkulainen, Risto Sentient Technologies Inc. One California California St Suite 2300 San FranciscoCA94111 United States University of Texas at Austin 2317 Speedway Stop D9500 AustinTX78712 United States
Multivariate testing has recently emerged as a promising technique in web interface design. In contrast to the standard A/B testing, multivariate approach aims at evaluating a large number of values in a few key varia... 详细信息
来源: 评论
A Simple Decomposition-Based Many-Objective evolutionary Algorithm with Local Iterative Update
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Yingyu Zeng, Bing School of Computer Science Liaocheng University Liaocheng252059 China School of Software Engineering South China University of Technology Guangzhou510006 China
Existing studies have shown that the conventional multi-objective evolutionary algorithms (MOEAs) based on decomposition may lose the population diversity when solving some many-objective optimization problems. In thi... 详细信息
来源: 评论
Discrepancy-based evolutionary Diversity Optimization
arXiv
收藏 引用
arXiv 2018年
作者: Neumann, Aneta Gao, Wanru Doerr, Carola Neumann, Frank Wagner, Markus Optimisation and Logistics University of Adelaide Adelaide Australia CNRS Sorbonne Universités UPMC Univ Paris 06 LIP6 Paris France
Diversity plays a crucial role in evolutionary computation. While diversity has been mainly used to prevent the population of an evolutionary algorithm from premature convergence, the use of evolutionary algorithms to... 详细信息
来源: 评论
How do simple evolutionary strategies and investment optimizations a ect ecological patterns? the case of generalized Taylor's Law
arXiv
收藏 引用
arXiv 2018年
作者: Garlaschi, Stefano Stivanello, Samuele Department of Physics and Astronomy Galileo Galilei University of Padova Department of Mathematics Tullio Levi-Civita University of Padova
Taylor's Law (TL) relates the variance to the mean of a random variable via power law. In ecology it applies to populations and it is a common empirical pattern shared among di erent ecosystems. Measurements give ... 详细信息
来源: 评论
Guided evolutionary Strategies: Escaping the curse of dimensionality in random search
arXiv
收藏 引用
arXiv 2018年
作者: Maheswaranathan, Niru Metz, Luke Tucker, George Choi, Dami Sohl-Dickstein, Jascha Google Brain
Many applications in machine learning require optimizing a function whose true gradient is unknown, but where surrogate gradient information (directions that may be correlated with, but not necessarily identical to, t... 详细信息
来源: 评论
Evolving multimodal robot behavior via many stepping stones with the combinatorial multi-objective evolutionary algorithm
arXiv
收藏 引用
arXiv 2018年
作者: Huizinga, Joost Clune, Jeff Evolving Artificial Intelligence Laboratory University of Wyoming LaramieWY82071 United States Uber AI Labs San FranciscoCA94104 United States
An important challenge in reinforcement learning, including evolutionary robotics, is to solve multimodal problems, where agents have to act in qualitatively different ways depending on the circumstances. Because mult... 详细信息
来源: 评论