咨询与建议

限定检索结果

文献类型

  • 6,711 篇 会议
  • 5,186 篇 期刊文献
  • 148 篇 学位论文
  • 9 篇 科技报告
  • 6 册 图书
  • 3 篇 资讯

馆藏范围

  • 12,063 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,313 篇 工学
    • 7,667 篇 计算机科学与技术...
    • 2,335 篇 软件工程
    • 2,046 篇 电气工程
    • 1,139 篇 控制科学与工程
    • 629 篇 信息与通信工程
    • 458 篇 机械工程
    • 324 篇 电子科学与技术(可...
    • 302 篇 生物工程
    • 267 篇 动力工程及工程热...
    • 251 篇 生物医学工程(可授...
    • 238 篇 材料科学与工程(可...
    • 227 篇 化学工程与技术
    • 227 篇 石油与天然气工程
    • 217 篇 土木工程
    • 193 篇 力学(可授工学、理...
    • 147 篇 仪器科学与技术
    • 143 篇 航空宇航科学与技...
    • 133 篇 建筑学
  • 4,721 篇 理学
    • 3,318 篇 数学
    • 834 篇 生物学
    • 678 篇 物理学
    • 482 篇 统计学(可授理学、...
    • 465 篇 系统科学
    • 229 篇 化学
  • 1,937 篇 管理学
    • 1,681 篇 管理科学与工程(可...
    • 436 篇 工商管理
    • 250 篇 图书情报与档案管...
  • 364 篇 医学
    • 221 篇 临床医学
    • 200 篇 基础医学(可授医学...
  • 232 篇 经济学
    • 201 篇 应用经济学
  • 216 篇 农学
  • 135 篇 法学
  • 32 篇 教育学
  • 11 篇 文学
  • 11 篇 艺术学
  • 10 篇 军事学
  • 8 篇 哲学
  • 1 篇 历史学

主题

  • 12,063 篇 evolutionary alg...
  • 602 篇 optimization
  • 530 篇 multi-objective ...
  • 340 篇 genetic algorith...
  • 300 篇 neural networks
  • 273 篇 differential evo...
  • 188 篇 machine learning
  • 172 篇 particle swarm o...
  • 165 篇 multiobjective o...
  • 143 篇 genetic programm...
  • 128 篇 artificial intel...
  • 110 篇 swarm intelligen...
  • 107 篇 metaheuristics
  • 106 篇 genetic algorith...
  • 95 篇 data mining
  • 91 篇 algorithm develo...
  • 87 篇 image processing
  • 81 篇 global optimizat...
  • 79 篇 artificial neura...
  • 76 篇 deep learning

机构

  • 59 篇 brno university ...
  • 39 篇 natl univ singap...
  • 37 篇 univ birmingham ...
  • 28 篇 nanyang technol ...
  • 28 篇 univ granada dep...
  • 27 篇 univ birmingham ...
  • 27 篇 charles universi...
  • 22 篇 wuhan univ state...
  • 19 篇 school of comput...
  • 18 篇 univ adelaide sc...
  • 17 篇 china univ geosc...
  • 17 篇 de montfort univ...
  • 16 篇 southern univ sc...
  • 16 篇 natl univ def te...
  • 16 篇 univ cordoba dep...
  • 15 篇 king fahd univ p...
  • 15 篇 univ york dept e...
  • 15 篇 shenzhen univ co...
  • 14 篇 michigan state u...
  • 14 篇 max planck inst ...

作者

  • 116 篇 neumann frank
  • 90 篇 yao xin
  • 67 篇 deb kalyanmoy
  • 63 篇 zelinka ivan
  • 54 篇 yang shengxiang
  • 37 篇 neumann aneta
  • 37 篇 jin yaochu
  • 36 篇 zou juan
  • 36 篇 sudholt dirk
  • 32 篇 tang ke
  • 32 篇 coello carlos a....
  • 31 篇 he jun
  • 31 篇 senkerik roman
  • 30 篇 friedrich tobias
  • 27 篇 schoenauer marc
  • 27 篇 cotta carlos
  • 26 篇 togelius julian
  • 26 篇 doerr benjamin
  • 25 篇 wagner markus
  • 25 篇 bossek jakob

语言

  • 11,551 篇 英文
  • 348 篇 其他
  • 120 篇 中文
  • 17 篇 西班牙文
  • 8 篇 日文
  • 8 篇 土耳其文
  • 5 篇 法文
  • 4 篇 葡萄牙文
  • 1 篇 德文
  • 1 篇 朝鲜文
  • 1 篇 俄文
检索条件"主题词=evolutionary algorithms"
12063 条 记 录,以下是4601-4610 订阅
排序:
A modified indicator-based evolutionary algorithm (mIBEA)
A modified indicator-based evolutionary algorithm (mIBEA)
收藏 引用
2017 IEEE Congress on evolutionary Computation, CEC 2017
作者: Li, Wenwen Özcan, Ender John, Robert Drake, John H. Neumann, Aneta Wagner, Markus School of Computer Science University of Nottingham Jubilee Campus Wollaton Road NottinghamNG8 1BB United Kingdom Operational Research Group Queen Mary University of London Mile End Road LondonE1 4NS United Kingdom School of Computer Science University of Adelaide Ingkarni Wardli Building AdelaideSA5005 Australia
Multi-objective evolutionary algorithms (MOEAs) based on the concept of Pareto-dominance have been successfully applied to many real-world optimisation problems. Recently, research interest has shifted towards indicat... 详细信息
来源: 评论
A study on polynomial regression and Gaussian Process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm
A study on polynomial regression and Gaussian Process global...
收藏 引用
2005 IEEE Congress on evolutionary Computation, IEEE CEC 2005
作者: Zhou, Zongzhao Ong, Yew Soon Nguyen, My Hanh Lim, Dudy School of Computer Engineering Nanyang Technological University Nanyang Avenue Singapore 639798 Singapore
This paper presents a study on Hierarchical Surrogate-Assisted evolutionary Algorithm (HSAEA) using different global surrogate models for solving computationally expensive optimization problems. In particular, we cons... 详细信息
来源: 评论
Scale-Free evolutionary Level Generation  14
Scale-Free Evolutionary Level Generation
收藏 引用
14th IEEE Conference on Computational Intelligence and Games, CIG 2018
作者: Ruela, Andre Siqueira Valdivia Delgado, Karina Postgraduate Program in Information Systems University of São Paulo São Paulo Brazil Dept. of Information Systems University of São Paulo São Paulo Brazil
This work proposes a new approach for the graph-based procedural level generation for games, through evolutionary algorithms. The levels are encoded as a graph structure inspired by the concepts of a scale-free networ... 详细信息
来源: 评论
Finding an evolutionary solution to the game of mastermind with good scaling behavior
收藏 引用
7th International Conference on Learning and Intelligent Optimization, LION 7
作者: Merelo, Juan Julian Mora, Antonio M. Cotta, Carlos Fernández-Leiva, Antonio J. Department Computer Architecture and Technology + CITIC University of Granada Granada Spain Department of Computer Sciences and Languages University of Málaga Málaga Spain
There are two main research issues in the game of Mastermind: one of them is finding solutions that are able to minimize the number of turns needed to find the solution, and another is finding methods that scale well ... 详细信息
来源: 评论
An evolutionary algorithm for controlling chaos: The use of multi–objective fitness functions  7th
收藏 引用
7th International Conference on Parallel Problem Solving from Nature, PPSN 2002
作者: Richter, Hendrik Fraunhofer–Institut für Produktionstechnik und Automatisierung Nobelstrasse 12 StuttgartD–70569 Germany
In this paper, we study an evolutionary algorithm employed to design and optimize a local control of chaos. In particular, we use a multi–objective fitness function, which consists of the objective function to be opt... 详细信息
来源: 评论
Run-time analysis of population-based evolutionary algorithm in noisy environments  15
Run-time analysis of population-based evolutionary algorithm...
收藏 引用
13th ACM Conference on Foundations of Genetic algorithms, FOGA 2015
作者: Prügel-Bennett, Adam Rowe, Jonathan Shapiro, Jonathan Electronics and Computer Science University of Southampton SouthamptonSO17 1BJ United Kingdom Department of Computer Science University of Birmingham Birmingham United Kingdom Department of Computer Science University of Manchester Manchester United Kingdom
This paper analyses a generational evolutionary algorithm using only selection and uniform crossover. With a probability arbitrarily close to one the evolutionary algorithm is shown to solve onemax in O(n log2(n)) fun... 详细信息
来源: 评论
An improved immune evolutionary algorithm for multimodal function optimization
An improved immune evolutionary algorithm for multimodal fun...
收藏 引用
3rd International Conference on Natural Computation, ICNC 2007
作者: Xuesong, Xu Jing, Zhang College of Electrical and Information Engineering Hunan University Changsha 410082 China
Based on the inspiration of immune system, a new multi-objective optimization algorithm is presented. The proposed approach adopts a cluster mechanism in order to divide the population into subpopulations for the stag... 详细信息
来源: 评论
A novel application of evolutionary computing in process systems engineering
A novel application of evolutionary computing in process sys...
收藏 引用
5th European Conference on evolutionary Computation in Combinatorial Optimization, EvoCOP 2005
作者: Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida Beatriz Laboratories de Investigación y Desarrollo en Computatión Científica Departamento de Ciencias e Ingeniería de la Computatión Universidad National del Sur Av. Alem 1253 8000 Bahía Blanca Argentina Planta Piloto de Ingeniería Química CONICET Complejo CRIBABB Camino La Carrindanga km.7 CC 717 Bahía Blanca Argentina
In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and ... 详细信息
来源: 评论
evolutionary many-objective optimisation: An exploratory analysis
Evolutionary many-objective optimisation: An exploratory ana...
收藏 引用
2003 Congress on evolutionary Computation, CEC 2003
作者: Purshouse, Robin C. Fleming, Peter J. Departmcnt of Autoniatic Control and Systems Engineering University of Sheffield Mappin Street Sheffield SI 3JD United Kingdom
This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by NSGA-II, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid... 详细信息
来源: 评论
Overcoming representation issues when including aesthetic criteria in evolutionary design
Overcoming representation issues when including aesthetic cr...
收藏 引用
2005 ASCE International Conference on Computing in Civil Engineering
作者: Machwe, Azahar T. Parmee, Ian C. Miles, John C. ACDDM Lab. CEMS University of the West of England Bristol United Kingdom Cardiff School of Engineering Cardiff University Cardiff CF24 0YF United Kingdom
It is well known that for any sort of evolutionary search we must represent the problem solution in a suitable manner since the choice of representation has a large impact on the type and efficiency of the evolutionar... 详细信息
来源: 评论