The study of production systems taxonomy not only provides a good description of organization dominant groups but also provides the ground for more specialized studies such as a study of performance, the proper form o...
详细信息
The study of production systems taxonomy not only provides a good description of organization dominant groups but also provides the ground for more specialized studies such as a study of performance, the proper form of production decisions in each group, and the theorizing in it. In some taxonomic studies, due to high speed and ease of implementation, K-means cluster analysis was used to analyze data but the convergence took place in local optimum. For this reason, Hybrid Clustering algorithms were used for the clustering of manufacturing companies. The clustering results of these methods were compared using validation indicators. According to the results of the comparisons, the best clustering algorithm was chosen, based on which cluster naming was done. Then, using the results of Discriminant Analysis, the distinctive dimensions of clusters were identified and the results showed that the manufacturing systems in Iran can be introduced in two dimensions of green production planning and resource capacity.
The Root Identification Problem is at the heart of CAD systems. In parametric constraint-based CAD, it can be seen as selecting one solution to a system of nonlinear equations among a potentially exponential number of...
详细信息
The theory of evolutionary computation for discrete search spaces has made significant progress since the early 2010s. This survey summarizes some of the most important recent results in this research area. It discuss...
详细信息
Mobile applications require dynamic reconfiguration services (DRS) to self-adapt their behavior to the context changes (e.g., scarcity of resources). Dynamic Software Product Lines (DSPL) are a well-accepted approach ...
详细信息
Mobile applications require dynamic reconfiguration services (DRS) to self-adapt their behavior to the context changes (e.g., scarcity of resources). Dynamic Software Product Lines (DSPL) are a well-accepted approach to manage runtime variability, by means of late binding the variation points at runtime. During the system's execution, the DRS deploys different configurations to satisfy the changing requirements according to a multiobjective criterion (e.g., insufficient battery level, requested quality of service). Search-based software engineering and, in particular, multiobjective evolutionary algorithms (MOEAs), can generate valid configurations of a DSPL at runtime. Several approaches use MOEAs to generate optimum configurations of a Software Product Line, but none of them consider DSPLs for mobile devices. In this paper, we explore the use of MOEAs to generate at runtime optimum configurations of the DSPL according to different criteria. The optimization problem is formalized in terms of a Feature Model (FM), a variability model. We evaluate six existing MOEAs by applying them to 12 different FMs, optimizing three different objectives (usability, battery consumption and memory footprint). The results are discussed according to the particular requirements of a DRS for mobile applications, showing that PAES and NSGA-II are the most suitable algorithms for mobile environments. (C) 2015 Elsevier Inc. All rights reserved.
The choice of the data type representation has significant impacts on the resource utilisation, maximum clock frequency and power consumption of any hardware design. Although arithmetic hardware units for the fixed-po...
详细信息
The choice of the data type representation has significant impacts on the resource utilisation, maximum clock frequency and power consumption of any hardware design. Although arithmetic hardware units for the fixed-point format can improve performance and reduce energy consumption, the process of tuning the right bit length is known as a time-consuming task, since it is a combinatorial optimisation problem guided by the accumulative arithmetic computation error. A novel evolutionary approach to accelerate the process of converting algorithms from the floating-point to fixed-point format is presented. Results are demonstrated by converting three computing-intensive algorithms from the mobile robotic scenario, where data error accumulated during execution is influenced by external factors, such as sensor noise and navigation environment characteristics. The proposed evolutionary algorithm accelerated the conversion process by up to 2.5 x against the state-of-the-art methods, allowing even further bit-length optimisations.
This paper examines the incorporation of useful information extracted from the evolutionary process, in order to improve algorithm performance. In order to achieve this objective, we introduce an efficient method of e...
详细信息
This paper examines the incorporation of useful information extracted from the evolutionary process, in order to improve algorithm performance. In order to achieve this objective, we introduce an efficient method of extracting and utilizing valuable information from the evolutionary process. Finally, this information is utilized for optimizing the search process. The proposed algorithm is compared with the NSGAII for solving some real-world instances of the fuzzy portfolio optimization problem. The proposed algorithm outperforms the NSGAII for all examined test instances.
The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochasti...
详细信息
The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large search spaces effectively and is one of the commonly used methods for flexible ligand docking. During the last decade, several EAs using different variation operators have been introduced, such as the ones provided with the AutoDock program. In this paper we evaluate the performance of different EA settings such as choice of variation operators, population size, and usage of local search. The comparison is performed on a suite of six docking problems previously used to evaluate the performance of search algorithms provided with the AutoDock program package. The results from our investigation confirm that the choice of variation operators has an impact on the search-capabilities of EAs. The introduced DockEA using the best settings found obtained the overall best docking solutions compared to the Lamarckian GA (LGA) provided with AutoDock. Furthermore, the DockEA proved to be more robust than the LGA (in terms of reproducing the results in several runs) on the more difficult problems with a high number of flexible torsion angles. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
SALMO-OO represents an object-oriented simulation library for lake ecosystems that allows to determine generic model structures for certain lake categories. It is based on complex ordinary differential equations that ...
详细信息
SALMO-OO represents an object-oriented simulation library for lake ecosystems that allows to determine generic model structures for certain lake categories. It is based on complex ordinary differential equations that can be assembled by alternative process equations for algal growth and grazing as well as zooplankton growth and mortality. It requires 128 constant parameters that are causally related to the metabolic, chemical and transport processes in lakes either estimated from laboratory and field experiments or adopted from the literature. An evolutionary algorithm (EA) was integrated into SALMO-OO in order to facilitate multi-objective optimization for selected parameters and to substitute them by optimum temperature and phosphate functions. The parameters were related to photosynthesis, respiration and grazing of the three algal groups diatoms, green algae and blue-green algae. The EA determined specific temperature and phosphate functions for same parameters for 3 lake categories that were validated by ecological data of six lakes from Germany and South Africa. The results of this study have demonstrated that: (1) the hybridization of ordinary differential equations by EA provide a sophisticated approach to fine-tune crucial parameters of complex ecological models, and (2) the multi-objective parameter optimization of SALMO-OO by EA has significantly improved the accuracy of simulation results for three different lake categories. (C) 2008 Elsevier B.V. All rights reserved.
In this paper a methodology for the delineation of local labour markets (LLMs) using evolutionary algorithms is proposed. This procedure, based on that in Florez-Revuelta et al. [13,14], introduces three modifications...
详细信息
In this paper a methodology for the delineation of local labour markets (LLMs) using evolutionary algorithms is proposed. This procedure, based on that in Florez-Revuelta et al. [13,14], introduces three modifications. First, initial groups of municipalities with a minimum size requirement are built using the travel time between them. Second, a not fully random initiation algorithm is proposed. And third, as a final stage of the procedure, a contiguity step is implemented. These modifications significantly decrease the computational times of the algorithm (up to a 99%) without any deterioration of the quality of the solutions. The optimization algorithm may give a set of potential solutions with very similar values with respect to the objective function what would lead to different partitions, both in terms of number of markets and their composition. In order to capture their common aspects an algorithm based on a cluster partitioning of k-means type is presented. This stage of the procedure also provides a ranking of LLMs foci useful for planners and administrations in decision-making processes on issues related to labour activities. Finally, to evaluate the performance of the algorithm a toy example with artificial data is analysed. The full methodology is illustrated through a real commuting data set of the region of Aragon (Spain).
This paper introduces LEAC, a new C++ partitioning clustering library based on evolutionary computation. LEAC provides plenty of elements (individual encoding schemes, genetic operators, evaluation metrics, among othe...
详细信息
This paper introduces LEAC, a new C++ partitioning clustering library based on evolutionary computation. LEAC provides plenty of elements (individual encoding schemes, genetic operators, evaluation metrics, among others) which allow an easy and fast development of new clustering algorithms. Furthermore, it includes 23 algorithms which represent the state-of-the-art in evolutionary algorithms for partial clustering. The paper describes through examples the main features and the design principles of the software, as well as how to use LEAC to carry out a comparison between different proposals and how to extend it by including new algorithms. (C) 2019 Elsevier B.V. All rights reserved.
暂无评论