咨询与建议

限定检索结果

文献类型

  • 21 篇 会议
  • 12 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 31 篇 工学
    • 14 篇 电气工程
    • 14 篇 计算机科学与技术...
    • 8 篇 石油与天然气工程
    • 5 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 34 篇 evolutionary par...
  • 6 篇 particle swarm o...
  • 4 篇 forecasting
  • 3 篇 wavelet transfor...
  • 3 篇 wind power
  • 3 篇 model selection
  • 3 篇 differential evo...
  • 3 篇 genetic algorith...
  • 3 篇 real-coded genet...
  • 2 篇 par location
  • 2 篇 distribution gen...
  • 2 篇 component
  • 2 篇 ancillary servic...
  • 2 篇 short term load ...
  • 2 篇 temporally cumul...
  • 2 篇 canonical partic...
  • 2 篇 exploitation and...
  • 2 篇 optimization
  • 2 篇 artificial intel...
  • 2 篇 neuro-fuzzy syst...

机构

  • 2 篇 inesc id p-9 lis...
  • 2 篇 kyushu inst tech...
  • 2 篇 meiji univ dept ...
  • 2 篇 univ lisbon ist ...
  • 2 篇 univ porto feup ...
  • 1 篇 univ beira inter...
  • 1 篇 univ porto inesc...
  • 1 篇 univ jeddah coll...
  • 1 篇 amirkabir univ t...
  • 1 篇 fed inst educ sc...
  • 1 篇 kyushu inst tech...
  • 1 篇 univ teknol mara...
  • 1 篇 univ nacl colomb...
  • 1 篇 univ jeddah coll...
  • 1 篇 univ jeddah coll...
  • 1 篇 xm limassol cypr...
  • 1 篇 univ porto inesc...
  • 1 篇 meiji univ dept ...
  • 1 篇 jomo kenyatta un...
  • 1 篇 univ malaya fac ...

作者

  • 4 篇 zhang hong
  • 3 篇 ishikawa masumi
  • 3 篇 miranda vladimir...
  • 2 篇 khodr hussein m.
  • 2 篇 vale zita a.
  • 2 篇 mori hiroyuki
  • 2 篇 mokhlis hazlie
  • 2 篇 osorio g. j.
  • 2 篇 alves rui
  • 2 篇 ardehali m. m.
  • 2 篇 canizes bruno
  • 2 篇 matias j. c. o.
  • 2 篇 catalao j. p. s.
  • 2 篇 ramos carlos
  • 2 篇 soares joao p.
  • 2 篇 lorestani a.
  • 1 篇 l. willer
  • 1 篇 hussein m. khodr
  • 1 篇 m. babita jain
  • 1 篇 jumaat s. a.

语言

  • 32 篇 英文
  • 2 篇 中文
检索条件"主题词=evolutionary particle swarm optimization"
34 条 记 录,以下是1-10 订阅
排序:
evolutionary particle swarm optimization (EPSO) Based Technique for Multiple SVCs optimization
Evolutionary Particle Swarm Optimization (EPSO) Based Techni...
收藏 引用
IEEE International Conference on Power and Energy (PECon)
作者: Jumaat, Siti Amely Musirin, Ismail Othman, Muhammad Murtadha Mokhlis, Hazlie Univ Tun Hussein Onn Malaysia UTHM Fac Elect & Elect Engn Batu Pahat 86400 Johor Malaysia Univ Teknologi MARA Malaysia UiTM Fac Elect Engn Shah Alam 40450 Malaysia Univ Malaya Fac Engn Dept Elect Engn Kuala Lumpur Malaysia
This paper presents evolutionary particle swarm optimization (EPSO) based technique for multiple SVCs optimization, in order to minimize the transmission loss in power system. In this study, static var compensator (SV... 详细信息
来源: 评论
Multi-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generation
收藏 引用
ELECTRIC POWER SYSTEMS RESEARCH 2012年 89卷 100-108页
作者: Maciel, Renan S. Rosa, Mauro Miranda, Vladimiro Padilha-Feltrin, Antonio Sao Paulo State Univ UNESP Dept Elect Engn BR-15385000 Ilha Solteira SP Brazil INESCPorto USE Power Syst Unit P-4200465 Oporto Portugal Univ Porto FEUP Fac Engn P-4200465 Oporto Portugal
This paper proposes a multi-objective approach to a distribution network planning process that deals with the challenges derived from the integration of Distributed Generation (DG). The proposal consists of a multi-ob... 详细信息
来源: 评论
optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm
收藏 引用
RENEWABLE ENERGY 2018年 第Apr.期119卷 490-503页
作者: Lorestani, A. Ardehali, M. M. Amirkabir Univ Technol Tehran Polytech Ctr Excellence Power Syst Dept Elect EngnEnergy Syst Lab Tehran Iran
Renewable energy (RE) sources can be incorporated in design of combined heat and power (CHP) systems, so that the advantages of zero environmental emissions as well as higher energy efficiencies are realized simultane... 详细信息
来源: 评论
Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm
收藏 引用
ENERGY 2018年 145卷 839-855页
作者: Lorestani, A. Ardehali, M. M. Amirkabir Univ Technol Tehran Polytech Dept Elect Engn Ctr Excellence Power SystEnergy Syst Lab Tehran Iran
Renewable energy (RE) sources can be integrated to serve autonomous tri-generation combined cooling, heating and power (CCHP) systems, so that the advantages of zero environmental emissions as well as higher energy ef... 详细信息
来源: 评论
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
收藏 引用
RENEWABLE ENERGY 2015年 75卷 301-307页
作者: Osorio, G. J. Matias, J. C. O. Catalao, J. P. S. Univ Beira Interior R Fonte Lameiro P-6201001 Covilha Portugal INESC ID P-1000029 Lisbon Portugal Univ Lisbon IST P-1049001 Lisbon Portugal
The non-stationary and stochastic nature of wind power reveals itself a difficult task to forecast and manage. In this context, with the continuous increment of wind farms and their capacity production in Portugal, th... 详细信息
来源: 评论
Differential evolutionary particle swarm optimization (DEEPSO): a successful hybrid
Differential Evolutionary Particle Swarm Optimization (DEEPS...
收藏 引用
1st BRICS Countries Congress on Computational Intelligence / 11th Brazilian Congress on Computational Intelligence (BRICS-CCI and CBIC)
作者: Miranda, Vladimiro Alves, Rui Univ Porto INESC TEC INESC Technol & Sci Rua Campo Alegre 823 P-4100 Oporto Portugal Univ Porto FEUP Fac Engn P-4100 Oporto Portugal
This paper explores, with numerical case studies, the performance of an optimization algorithm that is a variant of EPSO, the evolutionary particle swarm optimization method. EPSO is already a hybrid approach that may... 详细信息
来源: 评论
Profit Based Unit Commitment Using evolutionary particle swarm optimization
Profit Based Unit Commitment Using Evolutionary Particle Swa...
收藏 引用
IEEE AFRICON Conference - Science, Technology and Innovation for Africa
作者: Bikeri, Adline Kihato, Peter Maina, Christopher Jomo Kenyatta Univ Agr & Technol Sch Elect Elect & Informat Engn Juja Kenya Tech Univ Kenya Dept Elect & Power Engn Nairobi Kenya
The profit based unit commitment (PBUC) problem determines an optimal unit commitment schedule for a generation company (GENCO) participating in a deregulated environment with the aim of maximizing its profit. This is... 详细信息
来源: 评论
Fuzzy Modeling and Similarity based Short Term Load Forecasting using evolutionary particle swarm optimization
Fuzzy Modeling and Similarity based Short Term Load Forecast...
收藏 引用
IEEE Power and Energy Society General Meeting
作者: Amit Jain M. Babita Jain IEEE
There are a lot of uncertainties in planning and operation of electric power system, which is a complex, nonlinear, and non-stationary system. Advanced computational methods are required for planning and optimization,... 详细信息
来源: 评论
evolutionary Canonical particle swarm Optimizer - A Proposal of Meta-optimization in Model Selection
Evolutionary Canonical Particle Swarm Optimizer - A Proposal...
收藏 引用
18th International Conference on Artificial Neural Networks (ICANN 2008)
作者: Zhang, Hong Ishikawa, Masumi Kyushu Inst Technol Dept Brain Sci & Engn Kitakyushu Fukuoka 8080196 Japan
We proposed evolutionary particle swarm optimization (EPSO) which provides a new paradigm of meta-optimization for model selection in swarm intelligence. In this paper, we extend the technique of online evolutionary c... 详细信息
来源: 评论
Electricity prices forecasting by a hybrid evolutionary-adaptive methodology
收藏 引用
ENERGY CONVERSION AND MANAGEMENT 2014年 第Apr.期80卷 363-373页
作者: Osorio, G. J. Matias, J. C. O. Catalao, J. P. S. Univ Beira Interior P-6201001 Covilha Portugal INESC ID P-1000029 Lisbon Portugal Univ Lisbon IST P-1049001 Lisbon Portugal
With the restructuring of the electricity sector in recent years, and the increased variability and uncertainty associated with electricity market prices, it has become necessary to develop forecasting tools with enha... 详细信息
来源: 评论