咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 电气工程
  • 1 篇 理学
    • 1 篇 生物学

主题

  • 3 篇 evolutionnary al...
  • 2 篇 region growing
  • 2 篇 segmentation
  • 2 篇 evolutionary reg...
  • 2 篇 principle of max...
  • 1 篇 artificial immun...
  • 1 篇 pareto front
  • 1 篇 mokp
  • 1 篇 hybridization
  • 1 篇 multiple-objecti...

机构

  • 1 篇 univ mohammed 1 ...
  • 1 篇 univ quebec chic...
  • 1 篇 ensah univ abdel...
  • 1 篇 labo matsi esto ...
  • 1 篇 labo lsa sdic te...

作者

  • 1 篇 merzougui mohamm...
  • 1 篇 zinflou arnaud
  • 1 篇 mohammed merzoug...
  • 1 篇 el allaoui ahmad
  • 1 篇 ahmad el allaoui
  • 1 篇 gravel marc
  • 1 篇 gagne caroline

语言

  • 3 篇 英文
检索条件"主题词=evolutionnary algorithm"
3 条 记 录,以下是1-10 订阅
排序:
Region growing segmentation optimized by evolutionary approach and Maximum Entropy  10
Region growing segmentation optimized by evolutionary approa...
收藏 引用
10th International Conference on Ambient Systems, Networks and Technologies (ANT) / 2nd International Conference on Emerging Data and Industry 4.0 (EDI40)
作者: Merzougui, Mohammed El Allaoui, Ahmad Univ Mohammed 1 ESTO Lobo Matsi BP 473 Oujda Morocco ENSAH Univ Abdelmalek Essaadi SDIC Team Labo LSA Teouan Morocco
In this paper, we propose a segmentation method based on region growing and evolutionary algorithms. Before segmentation, the number of classes is determined by the principle of maximum entropy. The proposed approach ... 详细信息
来源: 评论
Solving multiple-objective optimization problems using GISMOO algorithm
Solving multiple-objective optimization problems using GISMO...
收藏 引用
World Congress on Nature and Biologically Inspired Computing
作者: Zinflou, Arnaud Gagne, Caroline Gravel, Marc Univ Quebec Chicoutimi Dept Math & Informat Chicoutimi PQ Canada
In this paper, we proposed a new Pareto generic algorithm which hybridizes genetic algorithm and artificial immune systems. Numerical experiments were made using a classical benchmark in multiple-objective optimizatio... 详细信息
来源: 评论
Region growing segmentation optimized by evolutionary approach and Maximum Entropy
收藏 引用
Procedia Computer Science 2019年 151卷 1046-1051页
作者: Mohammed Merzougui Ahmad El Allaoui Labo Matsi ESTO B.P 473 University Mohammed I Oujda Morocco Labo LSA SDIC team ENSAH Univerisy Abdelmalek Essaadi Teouan Morocco
In this paper, we propose a segmentation method based on region growing and evolutionary algorithms. Before segmentation, the number of classes is determined by the principle of maximum entropy. The proposed approach ... 详细信息
来源: 评论