咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 14 篇 计算机科学与技术...
    • 3 篇 电气工程
    • 3 篇 软件工程
  • 3 篇 理学
    • 1 篇 数学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 16 篇 evolving data st...
  • 7 篇 concept drift
  • 3 篇 clustering
  • 3 篇 balancing
  • 2 篇 change detection
  • 2 篇 statistical hypo...
  • 2 篇 streaming
  • 2 篇 adaptive learnin...
  • 1 篇 data stream clus...
  • 1 篇 hyper-ellipsoida...
  • 1 篇 dynamic weightin...
  • 1 篇 calinski-harabas...
  • 1 篇 scalability
  • 1 篇 decision support...
  • 1 篇 deep learning
  • 1 篇 stream clusterin...
  • 1 篇 sub-trajectory c...
  • 1 篇 sml
  • 1 篇 data clustering
  • 1 篇 online learning

机构

  • 2 篇 mines douai ia f...
  • 1 篇 centre for resea...
  • 1 篇 bilkent univ bil...
  • 1 篇 southwest jiaoto...
  • 1 篇 univ tunis inst ...
  • 1 篇 telecom paristec...
  • 1 篇 univ barisal dep...
  • 1 篇 univ sci & techn...
  • 1 篇 malaviya natl in...
  • 1 篇 univ texas dalla...
  • 1 篇 politecn milan d...
  • 1 篇 department of co...
  • 1 篇 king mongkuts in...
  • 1 篇 deib politecn mi...
  • 1 篇 tokai univ dept ...
  • 1 篇 univ waikato ham...
  • 1 篇 guru nanak dev u...
  • 1 篇 politecn milan d...
  • 1 篇 univ tunis inst ...
  • 1 篇 blekinge inst te...

作者

  • 3 篇 bernardo alessio
  • 2 篇 sayed-mouchaweh ...
  • 2 篇 khamassi imen
  • 2 篇 puntheeranurak s...
  • 2 篇 ghedira khaled
  • 2 篇 della valle eman...
  • 2 篇 hammami moez
  • 1 篇 bonab hamed r.
  • 1 篇 valle emanuele d...
  • 1 篇 can fazli
  • 1 篇 said jadid abdul...
  • 1 篇 yang yan
  • 1 篇 bifet albert
  • 1 篇 li tianrui
  • 1 篇 netz marie perss...
  • 1 篇 boeva veselka
  • 1 篇 khan latifur
  • 1 篇 thi thi shein
  • 1 篇 chahal kuljit ka...
  • 1 篇 singh gurvinder

语言

  • 16 篇 英文
检索条件"主题词=evolving data stream"
16 条 记 录,以下是1-10 订阅
排序:
A buffer-based online clustering for evolving data stream
收藏 引用
INFORMATION SCIENCES 2019年 489卷 113-135页
作者: Islam, Md. Kamrul Ahmed, Md. Manjur Zamli, Kamal Z. Univ Malaysia Pahang Fac Comp Syst & Software Engn Kuantan 26300 Pahang Malaysia Univ Barisal Dept Comp Sci & Engn Kornokathi 8200 Barisal Bangladesh
data stream clustering plays an important role in data stream mining for knowledge extraction. Numerous researchers have recently studied density-based clustering algorithms due to their capability to generate arbitra... 详细信息
来源: 评论
Hyper-ellipsoidal clustering technique for evolving data stream
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2014年 70卷 3-14页
作者: Rehman, Muhammad Zia-ur Li, Tianrui Yang, Yan Wang, Hongjun Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 610031 Peoples R China
data mining has become a key ingredient in establishing intelligent decision support systems. As one of main branches in data mining, data stream clustering has received much attention over the past decade. Most exist... 详细信息
来源: 评论
MapReduce based Frameworks for Classifying evolving data stream
MapReduce based Frameworks for Classifying Evolving Data Str...
收藏 引用
IEEE 13th International Conference on data Mining (ICDM)
作者: Haque, Ahsanul Khan, Latifur Univ Texas Dallas Dept Comp Sci Richardson TX 75083 USA
data stream mining has some inherent challenges which are not present in traditional data mining. stream data classification is a challenging problem because of two important properties: its infinite length and evolvi... 详细信息
来源: 评论
An autoencoder-based fast online clustering algorithm for evolving data stream  23
An autoencoder-based fast online clustering algorithm for ev...
收藏 引用
2nd Asia Conference on Algorithms, Computing and Machine Learning (CACML)
作者: Gao, Dazheng Univ Sci & Technol China Hefei Peoples R China
In the era of Big data, more and more IoT devices are generating huge amounts of high-dimensional, real-time and dynamic data streams. As a result, there is a growing interest in how to cluster this data effectively a... 详细信息
来源: 评论
Concept Drift-Based Intrusion Detection For evolving data stream Classification In IDS: Approaches And Comparative Study
收藏 引用
COMPUTER JOURNAL 2024年 第7期67卷 2529-2547页
作者: Seth, Sugandh Chahal, Kuljit Kaur Singh, Gurvinder Guru Nanak Dev Univ Dept Comp Sci & Engn Grand Trunk RdOff NH 1 Amritsar 143005 Punjab India
Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static dat... 详细信息
来源: 评论
Incremental Clustering Approach for evolving Trajectory data stream  6
Incremental Clustering Approach for Evolving Trajectory Data...
收藏 引用
6th International Electrical Engineering Congress (iEECON)
作者: Shein, Thi Thi Puntheeranurak, Sutheera King Mongkuts Inst Technol Ladkrabang Dept Comp Engn Fac Engn Bangkok Thailand
Trajectory data stream contain an enormous amount of data about spatial and temporal information of moving objects. Clustering the trajectory may bring benefits to several applications such as traffic monitoring syste... 详细信息
来源: 评论
Efficient Discovery of Traveling Companion from evolving Trajectory data stream  42
Efficient Discovery of Traveling Companion from Evolving Tra...
收藏 引用
42nd Annual IEEE-Computer-Society Computers, Software and Applications (COMPSAC) Conference - Staying Smarter in a Smartening World
作者: Thi Thi Shein Puntheeranurak, Sutheera Imamura, Makoto King Mongkuts Inst Technol Ladkrabang Fac Engn Dept Comp Engn Bangkok Thailand Tokai Univ Dept Embedded Technol Tokyo Japan
Trajectory data stream contain an enormous amount of data about spatial and temporal information of moving objects. Discovering useful pattern from moving objects can convey valuable knowledge to a variety application... 详细信息
来源: 评论
GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier for evolving data streams
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM data 2018年 第2期12卷 1–33页
作者: Bonab, Hamed R. Can, Fazli Bilkent Univ Ankara Turkey Bilkent Univ Bilkent Informat Retrieval Grp Comp Engn Dept TR-06800 Ankara Turkey
Designing adaptive classifiers for an evolving data stream is a challenging task due to the data size and its dynamically changing nature. Combining individual classifiers in an online setting, the ensemble approach, ... 详细信息
来源: 评论
VFC-SMOTE: very fast continuous synthetic minority oversampling for evolving data streams
收藏 引用
data MINING AND KNOWLEDGE DISCOVERY 2021年 第6期35卷 2679-2713页
作者: Bernardo, Alessio Della Valle, Emanuele Politecn Milan DEIB Milan Italy
The world is constantly changing, and so are the massive amount of data produced. However, only a few studies deal with online class imbalance learning that combines the challenges of class-imbalanced data streams and... 详细信息
来源: 评论
Discussion and review on evolving data streams and concept drift adapting
收藏 引用
evolving SYSTEMS 2018年 第1期9卷 1-23页
作者: Khamassi, Imen Sayed-Mouchaweh, Moamar Hammami, Moez Ghedira, Khaled Univ Tunis Inst Super Gest Tunis SOIE 41 Rue Liberte Le Bardo 2000 Tunisia Mines Douai IA F-59500 Douai France
Recent advances in computational intelligent systems have focused on addressing complex problems related to the dynamicity of the environments. In increasing number of real world applications, data are presented as st... 详细信息
来源: 评论