咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 avifauna
  • 1 篇 power grids
  • 1 篇 bird song
  • 1 篇 rare earths
  • 1 篇 logistics
  • 1 篇 bag device
  • 1 篇 miml
  • 1 篇 instance annotat...
  • 1 篇 expectation maxi...
  • 1 篇 mode matching
  • 1 篇 image annotation
  • 1 篇 annotations
  • 1 篇 computational mo...
  • 1 篇 multiinstance mu...
  • 1 篇 birds
  • 1 篇 bag label set
  • 1 篇 inference mechan...
  • 1 篇 expectation-maxi...
  • 1 篇 clustering algor...
  • 1 篇 learning (artifi...

机构

  • 1 篇 oregon state uni...

作者

  • 1 篇 pham anh t.
  • 1 篇 raich raviv
  • 1 篇 fern xiaoli z.

语言

  • 1 篇 英文
检索条件"主题词=expectation maximization inference"
1 条 记 录,以下是1-10 订阅
排序:
SIMULTANEOUS INSTANCE ANNOTATION AND CLUSTERING IN MULTI-INSTANCE MULTI-LABEL LEARNING  25
SIMULTANEOUS INSTANCE ANNOTATION AND CLUSTERING IN MULTI-INS...
收藏 引用
IEEE International Workshop on Machine Learning for Signal Processing
作者: Pham, Anh T. Raich, Raviv Fern, Xiaoli Z. Oregon State Univ Sch EECS Corvallis OR 97331 USA
Multi-instance multi-label learning (MIML) is a framework that addresses label ambiguity when data contains bags, each bag contains instances, and a bag label set is provided for each bag. Instance annotation in the M... 详细信息
来源: 评论