咨询与建议

限定检索结果

文献类型

  • 317 篇 会议
  • 178 篇 期刊文献

馆藏范围

  • 495 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 229 篇 电气工程
    • 155 篇 计算机科学与技术...
    • 106 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 37 篇 机械工程
    • 32 篇 软件工程
    • 27 篇 电子科学与技术(可...
    • 25 篇 仪器科学与技术
    • 20 篇 生物医学工程(可授...
    • 17 篇 交通运输工程
    • 10 篇 航空宇航科学与技...
    • 10 篇 核科学与技术
    • 7 篇 船舶与海洋工程
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 4 篇 化学工程与技术
  • 98 篇 理学
    • 33 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 15 篇 生物学
    • 11 篇 数学
    • 3 篇 化学
  • 46 篇 医学
    • 25 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 11 篇 特种医学
  • 41 篇 管理学
    • 33 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 11 篇 农学
    • 8 篇 作物学
  • 9 篇 经济学
    • 7 篇 应用经济学
    • 3 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 495 篇 expectation-maxi...
  • 49 篇 em algorithm
  • 37 篇 parameter estima...
  • 35 篇 maximum likeliho...
  • 34 篇 learning (artifi...
  • 34 篇 gaussian process...
  • 30 篇 algorithms
  • 29 篇 mixture models
  • 29 篇 channel estimati...
  • 27 篇 bayes methods
  • 25 篇 expectation-maxi...
  • 24 篇 hidden markov mo...
  • 23 篇 image reconstruc...
  • 22 篇 probability
  • 22 篇 monte carlo meth...
  • 22 篇 medical image pr...
  • 20 篇 maximum likeliho...
  • 19 篇 ofdm modulation
  • 19 篇 iterative method...
  • 18 篇 gaussian distrib...

机构

  • 3 篇 duke univ dept e...
  • 3 篇 univ so calif de...
  • 3 篇 graduate school ...
  • 2 篇 spcom group univ...
  • 2 篇 supelec departme...
  • 2 篇 univ victoria de...
  • 2 篇 inria centre ren...
  • 2 篇 princeton univer...
  • 2 篇 harbin inst tech...
  • 2 篇 oklahoma state u...
  • 2 篇 spcom group univ...
  • 2 篇 microsoft res re...
  • 2 篇 nanjing univ inf...
  • 2 篇 linkoping univ d...
  • 2 篇 calif state univ...
  • 2 篇 northwestern pol...
  • 2 篇 army engn univ d...
  • 2 篇 univ windsor dep...
  • 2 篇 microsoft resear...
  • 2 篇 bar ilan univ fa...

作者

  • 4 篇 calinon sylvain
  • 3 篇 bartolucci franc...
  • 3 篇 caldwell darwin ...
  • 3 篇 okamura hiroyuki
  • 3 篇 yang xianqiang
  • 3 篇 rodrigo carvajal
  • 3 篇 dohi tadashi
  • 3 篇 tomohiro nakatan...
  • 3 篇 krolik jeffrey l...
  • 3 篇 boris i. godoy
  • 3 篇 forbes florence
  • 2 篇 rogers jeffrey s...
  • 2 篇 mehrpouyan hani
  • 2 篇 juan c. agüero
  • 2 篇 wu qing ming jon...
  • 2 篇 a. pages-zamora
  • 2 篇 liu xin
  • 2 篇 moeneclaey marc
  • 2 篇 hirokazu kameoka
  • 2 篇 c. herzet

语言

  • 477 篇 英文
  • 13 篇 其他
  • 5 篇 中文
检索条件"主题词=expectation-maximisation algorithm"
495 条 记 录,以下是381-390 订阅
排序:
WAVELET DOMAIN CHANNEL ESTIMATION FOR MULTIBAND OFDM UWB COMMUNICATIONS
WAVELET DOMAIN CHANNEL ESTIMATION FOR MULTIBAND OFDM UWB COM...
收藏 引用
European Signal Processing Conference
作者: S. M. Sajad Sadough Emmanuel Jaffrot Pierre Duhamel University of Pisa
This paper presents a receiver that combines semi-blind channel estimation with the decoding process for multiband OFDM UWB communications. We particularly focus on reducing the number of estimated channel coefficient... 详细信息
来源: 评论
Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings  15
Large-Scale Bayesian Multi-Label Learning via Topic-Based La...
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Piyush Rai Changwei Hu Ricardo Henao Lawrence Carin CSE Dept IIT KanpurECE Dept Duke University ECE Dept Duke University
We present a scalable Bayesian multi-label learning model based on learning low-dimensional label embeddings. Our model assumes that each label vector is generated as a weighted combination of a set of topics (each to... 详细信息
来源: 评论
Exact Adversarial Attack to Image Captioning via Structured Output Learning with Latent Variables
Exact Adversarial Attack to Image Captioning via Structured ...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition
作者: Yan Xu Baoyuan Wu Fumin Shen Yanbo Fan Yong Zhang Heng Tao Shen Wei Liu University of Electronic Science and Technology of China Tencent AI Lab
In this work, we study the robustness of a CNN+RNN based image captioning system being subjected to adversarial noises. We propose to fool an image captioning system to generate some targeted partial captions for an i... 详细信息
来源: 评论
LOCAL LIKELIHOOD ESTIMATION OF TIME-VARIANT HAWKES MODELS
LOCAL LIKELIHOOD ESTIMATION OF TIME-VARIANT HAWKES MODELS
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Boris I. Godoy Victor Solo Jason Min Syed Ahmed Pasha School of Electrical Eng. & Telecommunications The University of New South Wales Sydney Australia Department of Electrical Engineering Air University Pakistan
The Hawkes process is the workhorse of dynamic point process modelling - the point process version of the autoregression. It has been applied, for example, in high frequency finance, electricity price spike modelling ... 详细信息
来源: 评论
Empirical Bayes estimation utilizing finite Gaussian Mixture Models
Empirical Bayes estimation utilizing finite Gaussian Mixture...
收藏 引用
CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)
作者: Rafael Orellana Rodrigo Carvajal Juan C. Agüero Universidad Técnica Federico Santa María Chile
In this paper we develop an identification algorithm to obtain an estimation of the prior distribution in the classical problem of Bayesian inference. We consider the Empirical Bayes approach to obtain the prior distr... 详细信息
来源: 评论
PEAK MODELING FOR ION MOBILITY SPECTROMETRY MEASUREMENTS
PEAK MODELING FOR ION MOBILITY SPECTROMETRY MEASUREMENTS
收藏 引用
European Signal Processing Conference
作者: Dominik Kopczynski Joerg Ingo Baumbach Sven Rahmann Bioinformatics for High-Throughput Technologies Computer Science XI Department Microfluidics and Clinical Diagnostics KIST Europe Genome Informatics Institute of Human Genetics Faculty of Medicine University of Duisburg-Essen
Ion mobility spectrometry (IMS), coupled with multicapillary columns (MCCs), is a technology for analyzing the concentration of volatile organic compounds (VOCs) in the air or in exhaled breath. We introduce a new mod... 详细信息
来源: 评论
Outlier Detection algorithm Based on Gaussian Mixture Model
Outlier Detection Algorithm Based on Gaussian Mixture Model
收藏 引用
IEEE International Conference on Power, Intelligent Computing and Systems
作者: Wenbo Liu Delong Cui Zhiping Peng Jihai Zhong Faulty of Computer Science Guangdong University of Technology Department of Computer and Electronic Information Guangdong University of Petrochemical Technology
Outlier detection is an important aspect in the field of data mining. In order to solve the problem of outlier detection in high-dimensional datasets, an outlier detection algorithm based on Gaussian mixture model is ... 详细信息
来源: 评论
SINGLE CHANNEL SOURCE SEPARATION BASED ON SPARSE SOURCE OBSERVATION MODEL WITH HARMONIC CONSTRAINT
SINGLE CHANNEL SOURCE SEPARATION BASED ON SPARSE SOURCE OBSE...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Tomohiro Nakatani Shoko Araki NTT Communication Science Laboratories NTT Corporation 2-4 Hikaridai Seika-cho Soraku-gun Kyoto 619-0237 Japan
This paper proposes a general single channel source separation approach that exploits statistical characteristics of the source including sparseness. A new observation model for a mixture of sparse sources is introduc... 详细信息
来源: 评论
AUDIO-VISUAL EMOTION RECOGNITION WITH BOOSTED COUPLED HMM
AUDIO-VISUAL EMOTION RECOGNITION WITH BOOSTED COUPLED HMM
收藏 引用
International Conference on Pattern Recognition
作者: Kun LU Yunde JIA School of Software Beijing Lab of Intelligent Information Tech School of Computer Science Beijing Institute of Technology
This paper presents a novel approach for automatic audio-visual emotion recognition. The audio and visual channels provide complementary information for human emotional states recognition, and we utilize coupled HMM (... 详细信息
来源: 评论
A concave regularization technique for sparse mixture models  11
A concave regularization technique for sparse mixture models
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Martin Larsson Johan Ugander School of Operations Research and Information Engineering Cornell University Center for Applied Mathematics Cornell University
Latent variable mixture models are a powerful tool for exploring the structure in large datasets. A common challenge for interpreting such models is a desire to impose sparsity, the natural assumption that each data p... 详细信息
来源: 评论