咨询与建议

限定检索结果

文献类型

  • 317 篇 会议
  • 176 篇 期刊文献

馆藏范围

  • 493 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 433 篇 工学
    • 226 篇 电气工程
    • 154 篇 计算机科学与技术...
    • 102 篇 信息与通信工程
    • 51 篇 控制科学与工程
    • 37 篇 机械工程
    • 30 篇 软件工程
    • 27 篇 电子科学与技术(可...
    • 25 篇 仪器科学与技术
    • 20 篇 生物医学工程(可授...
    • 17 篇 交通运输工程
    • 9 篇 航空宇航科学与技...
    • 9 篇 核科学与技术
    • 7 篇 船舶与海洋工程
    • 7 篇 生物工程
    • 6 篇 测绘科学与技术
    • 4 篇 化学工程与技术
  • 97 篇 理学
    • 33 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 16 篇 生物学
    • 9 篇 数学
    • 3 篇 化学
  • 48 篇 医学
    • 25 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 11 篇 特种医学
    • 4 篇 公共卫生与预防医...
  • 39 篇 管理学
    • 33 篇 管理科学与工程(可...
  • 11 篇 农学
    • 8 篇 作物学
  • 9 篇 经济学
    • 7 篇 应用经济学
    • 3 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 493 篇 expectation-maxi...
  • 48 篇 em algorithm
  • 37 篇 parameter estima...
  • 34 篇 learning (artifi...
  • 34 篇 gaussian process...
  • 34 篇 maximum likeliho...
  • 30 篇 algorithms
  • 29 篇 mixture models
  • 28 篇 bayes methods
  • 28 篇 channel estimati...
  • 25 篇 expectation-maxi...
  • 24 篇 image reconstruc...
  • 23 篇 hidden markov mo...
  • 22 篇 probability
  • 22 篇 monte carlo meth...
  • 22 篇 medical image pr...
  • 20 篇 maximum likeliho...
  • 19 篇 ofdm modulation
  • 19 篇 iterative method...
  • 18 篇 gaussian distrib...

机构

  • 3 篇 duke univ dept e...
  • 3 篇 univ so calif de...
  • 3 篇 graduate school ...
  • 2 篇 spcom group univ...
  • 2 篇 supelec departme...
  • 2 篇 univ victoria de...
  • 2 篇 inria centre ren...
  • 2 篇 princeton univer...
  • 2 篇 harbin inst tech...
  • 2 篇 oklahoma state u...
  • 2 篇 spcom group univ...
  • 2 篇 microsoft res re...
  • 2 篇 nanjing univ inf...
  • 2 篇 linkoping univ d...
  • 2 篇 calif state univ...
  • 2 篇 northwestern pol...
  • 2 篇 army engn univ d...
  • 2 篇 univ windsor dep...
  • 2 篇 microsoft resear...
  • 2 篇 bar ilan univ fa...

作者

  • 4 篇 calinon sylvain
  • 3 篇 bartolucci franc...
  • 3 篇 caldwell darwin ...
  • 3 篇 okamura hiroyuki
  • 3 篇 yang xianqiang
  • 3 篇 rodrigo carvajal
  • 3 篇 dohi tadashi
  • 3 篇 tomohiro nakatan...
  • 3 篇 krolik jeffrey l...
  • 3 篇 boris i. godoy
  • 3 篇 forbes florence
  • 2 篇 rogers jeffrey s...
  • 2 篇 mehrpouyan hani
  • 2 篇 juan c. agüero
  • 2 篇 wu qing ming jon...
  • 2 篇 a. pages-zamora
  • 2 篇 liu xin
  • 2 篇 moeneclaey marc
  • 2 篇 hirokazu kameoka
  • 2 篇 c. herzet

语言

  • 476 篇 英文
  • 12 篇 其他
  • 5 篇 中文
检索条件"主题词=expectation-maximisation algorithm"
493 条 记 录,以下是431-440 订阅
SPARSE REPRESENTATION algorithmS BASED ON MEAN-FIELD APPROXIMATIONS
SPARSE REPRESENTATION ALGORITHMS BASED ON MEAN-FIELD APPROXI...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: C. Herzet A. Dremeau INRIA Centre Rennes - Bretagne Atlantique Campus universitaire de Beaulieu 35000 Rennes France
In this paper we address the problem of sparse representation (SR) within a Bayesian framework. We assume that the observations are generated from a Bernoulli-Gaussian process and consider the corresponding Bayesian i... 详细信息
来源: 评论
Fast Bayesian Signal Recovery in Compressed Sensing with Partially Unknown Discrete Prior
Fast Bayesian Signal Recovery in Compressed Sensing with Par...
收藏 引用
WSA 2017;21th International ITG Workshop on Smart Antennas
作者: Norbert Goertz Gabor Hannak
Bayesian Approximate Message Passing (BAMP) provides excellent recovery performance in Compressed Sensing (CS), but one seemingly needs to know the pdf of the signal prior. If the shape of the pdf is known but not its... 详细信息
来源: 评论
Automatic Derivation of Statistical algorithms: The EM Family and Beyond  02
Automatic Derivation of Statistical Algorithms: The EM Famil...
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Alexander G. Gray Bernd Fischer Johann Schumann Wray Buntine Carnegie Mellon University
Machine learning has reached a point where many probabilistic methods can be understood as variations, extensions and combinations of a much smaller set of abstract themes, e.g., as different instances of the EM algor... 详细信息
来源: 评论
Distributed Passive Localization with Asynchronous Receivers Based on expectation Maximization
Distributed Passive Localization with Asynchronous Receivers...
收藏 引用
IEEE Global Communications Conference
作者: Weijie Yuan Nan Wu Hua Wang Jingming Kuang School of Information and Electronics Beijing Institute of Technology
In this paper, we study the time of arrival (TOA)-based distributed passive localization in asynchronous wireless network. Performing synchronization between receivers before target localization is possible but costs ... 详细信息
来源: 评论
Lateen EM: Unsupervised Training with Multiple Objectives, Applied to Dependency Grammar Induction  11
Lateen EM: Unsupervised Training with Multiple Objectives, A...
收藏 引用
Conference on empirical methods in natural language processing
作者: Valentin I. Spitkovsky Hiyan Alshawi Daniel Jurafsky Stanford University and Google Inc. Google Inc. Mountain View CA Stanford University Stanford CA
We present new training methods that aim to mitigate local optima and slow convergence in unsupervised training by using additional imperfect objectives. In its simplest form, lateen EM alternates between the two obje... 详细信息
来源: 评论
Fast algorithm for statistical phrase/accent command estimation based on generative model incorporating spectral features
Fast algorithm for statistical phrase/accent command estimat...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Ryotaro Sato Hirokazu Kameoka Kunio Kashino Graduate School of Information Science and Technology The University of Tokyo Japan NTT Communication Science Laboratories NTT Corporation Japan
An important challenge in speech processing involves extracting non-linguistic information from a fundamental frequency (F_0) contour of speech. We propose a fast algorithm for estimating the model parameters of the F... 详细信息
来源: 评论
Maximum likelihood identification of Hawkes-Pham models with a guaranteed stability condition
Maximum likelihood identification of Hawkes-Pham models with...
收藏 引用
IEEE Annual Conference on Decision and Control
作者: Boris I. Godoy Victor Solo Syed Ahmed Pasha School of Electrical Eng. and Telecomms The University of New South Wales (UNSW) Sydney Australia Department of Electrical Engineering Air University Pakistan
Point processes have many engineering applications and perhaps the most used dynamic system identification model is the Hawkes model. We propose a new approach to maximum likelihood estimation of Hawkes point process ... 详细信息
来源: 评论
Fast Transformation-Invariant Factor Analysis  02
Fast Transformation-Invariant Factor Analysis
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Anitha Kannan Nebojsa Jojic Brendan Frey University of Toronto Toronto Canada
Dimensionality reduction techniques such as principal component analysis and factor analysis are used to discover a linear mapping between high dimensional data samples and points in a lower dimensional subspace. In [... 详细信息
来源: 评论
Learning a Mixture of Sparse Models by EM algorithm for Object Clustering
Learning a Mixture of Sparse Models by EM Algorithm for Obje...
收藏 引用
International Conference on Computer Science and Network Technology
作者: Yuhan Fang Ruojing Jiang Chenguang Li College of Electronic and Information Engineering Southwest University Chongqing China School of Mathematical Sciences Fudan University Shanghai China Department of Information Engineering Hefei University of Technology Xuancheng China
Model-based object clustering is a very challenging unsupervised learning problem in computer vision, which involves both high dimensionality and hidden variables inference issues. In this paper, we will study object ... 详细信息
来源: 评论
A Novel OFDM Power Based Estimation for Dynamic Channel Tracking in Downlink LTE
A Novel OFDM Power Based Estimation for Dynamic Channel Trac...
收藏 引用
IEEE Vehicular Technology Conference
作者: Ali Kalakech Loic Brunel Marion Berbineau David Mottier Univ Lille Nord de France F-59000 Lille IFSTTAR LEOST Mitsubishi Electric R & D Center Europe
In this paper we compare several channel estimation algorithms in the case of LTE (Long Term Evolution) System when applied in a high mobility environment. In particular, we propose a novel algorithm, based on the obs... 详细信息
来源: 评论