咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 11 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 交通运输工程
    • 1 篇 软件工程
    • 1 篇 安全科学与工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 理学
    • 2 篇 数学

主题

  • 14 篇 expensive multio...
  • 4 篇 evolutionary com...
  • 3 篇 convergence
  • 3 篇 optimization
  • 3 篇 computational mo...
  • 3 篇 gaussian process
  • 2 篇 parego
  • 2 篇 iron
  • 2 篇 expected improve...
  • 2 篇 kriging
  • 2 篇 surrogate-assist...
  • 2 篇 hypervolume
  • 2 篇 surrogate-assist...
  • 2 篇 training
  • 1 篇 infill solutions...
  • 1 篇 efficient global...
  • 1 篇 deep neural netw...
  • 1 篇 surrogate-assist...
  • 1 篇 dimensionality r...
  • 1 篇 evolutionary alg...

机构

  • 2 篇 southern univ sc...
  • 2 篇 tsinghua univ pe...
  • 2 篇 michigan state u...
  • 1 篇 yokohama natl un...
  • 1 篇 city univ hong k...
  • 1 篇 hanyang univ ans...
  • 1 篇 xidian univ sch ...
  • 1 篇 michigan state u...
  • 1 篇 natl univ singap...
  • 1 篇 college of artif...
  • 1 篇 school of comput...
  • 1 篇 tsinghua univ de...
  • 1 篇 huazhong univ sc...
  • 1 篇 univ surrey dept...
  • 1 篇 michigan state u...
  • 1 篇 nankai univ coll...
  • 1 篇 city univ hong k...
  • 1 篇 shantou univ sch...
  • 1 篇 hanyang universi...
  • 1 篇 institute for su...

作者

  • 4 篇 yuan yuan
  • 3 篇 xu hua
  • 3 篇 wang hongyan
  • 2 篇 sun xiaomin
  • 2 篇 yang qi-te
  • 2 篇 zhan zhi-hui
  • 2 篇 deng junhui
  • 2 篇 zhang jun
  • 1 篇 xu xin-xin
  • 1 篇 lan tian
  • 1 篇 liu jun
  • 1 篇 song zhenshou
  • 1 篇 wang handing
  • 1 篇 chen ming
  • 1 篇 liu xiao-fang
  • 1 篇 banzhaf wolfgang
  • 1 篇 zhan dawei
  • 1 篇 zhang feng
  • 1 篇 luo liu-yue
  • 1 篇 jin yaochu

语言

  • 12 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=expensive multiobjective optimization"
14 条 记 录,以下是11-20 订阅
排序:
A Kriging-Assisted Two-Archive Evolutionary Algorithm for expensive Many-Objective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2021年 第6期25卷 1013-1027页
作者: Song, Zhenshou Wang, Handing He, Cheng Jin, Yaochu Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Guangdong Prov Key Lab Brain Inspired Intelligent Shenzhen 518055 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England
Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose ... 详细信息
来源: 评论
High-dimensional expensive multi-objective optimization via additive structure
收藏 引用
INTELLIGENT SYSTEMS WITH APPLICATIONS 2022年 14卷
作者: Wang, Hongyan Xu, Hua Yuan, Yuan Tsinghua Univ Dept Comp Sci & Technol State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China
expensive multi-objective problems (MOPs) are extremely challenging due to the high evaluation cost to find satisfying solutions with adequate precision, especially in high-dimensional cases. However, most of the curr... 详细信息
来源: 评论
Noisy multiobjective Black-Box optimization using Bayesian optimization  19
Noisy Multiobjective Black-Box Optimization using Bayesian O...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Wang, Hongyan Xu, Hua Yuan, Yuan Deng, Junhui Sun, Xiaomin Tsinghua Univ Beijing Peoples R China Michigan State Univ E Lansing MI 48824 USA
expensive black-box problems are usually optimized by Bayesian optimization (BO) since it can reduce evaluation costs via cheaper surrogates. The most popular model used in Bayesian optimization is the Gaussian proces... 详细信息
来源: 评论
Balancing Exploration and Exploitation in multiobjective Batch Bayesian optimization  19
Balancing Exploration and Exploitation in Multiobjective Bat...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Wang, Hongyan Xu, Hua Yuan, Yuan Sun, Xiaomin Deng, Junhui Tsinghua Univ Beijing Peoples R China Michigan State Univ E Lansing MI 48824 USA
Many applications such as hyper-parameter tunning in Machine Learning can be casted to multiobjective black-box problems and it is challenging to optimize them. Bayesian optimization (130) is an effective method to de... 详细信息
来源: 评论