咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 2 篇 exponentiated gr...
  • 1 篇 mixture models
  • 1 篇 probability dist...
  • 1 篇 additives
  • 1 篇 portfolios
  • 1 篇 vectors
  • 1 篇 em
  • 1 篇 on-line portfoli...
  • 1 篇 costs
  • 1 篇 machine learning
  • 1 篇 signal processin...
  • 1 篇 alpha-beta diver...
  • 1 篇 maximum likeliho...
  • 1 篇 machine learning...
  • 1 篇 standards
  • 1 篇 cost function

机构

  • 1 篇 polish acad sci ...
  • 1 篇 nicolaus coperni...
  • 1 篇 tokyo univ agr &...
  • 1 篇 univ seville dep...
  • 1 篇 tokyo univ agr &...
  • 1 篇 riken aip tokyo ...
  • 1 篇 at&t bell labs m...

作者

  • 1 篇 warmuth mk
  • 1 篇 schapire re
  • 1 篇 cichocki andrzej
  • 1 篇 cruces sergio
  • 1 篇 tanaka toshihisa
  • 1 篇 singer y
  • 1 篇 helmbold dp
  • 1 篇 sarmiento auxili...

语言

  • 2 篇 英文
检索条件"主题词=exponentiated gradient algorithms"
2 条 记 录,以下是1-10 订阅
排序:
Generalized exponentiated gradient algorithms and Their Application to On-Line Portfolio Selection
收藏 引用
IEEE ACCESS 2024年 12卷 197000-197020页
作者: Cichocki, Andrzej Cruces, Sergio Sarmiento, Auxiliadora Tanaka, Toshihisa POLISH ACAD SCI SYST RES INST PL-01447 Warsaw Poland Nicolaus Copernicus Univ UMK Dept Informat PL-87100 Torun Poland Tokyo Univ Agr & Technol Inst Global Innovat Res Koganei Tokyo 1840012 Japan Riken AIP Tokyo 1030027 Japan Univ Seville Dept Teoria Senal & Comunicac Seville 41092 Spain Tokyo Univ Agr & Technol Dept Elect Engn & Comp Sci Koganei Tokyo 1848588 Japan
Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized exponentiated gradient up... 详细信息
来源: 评论
A comparison of new and old algorithms for a mixture estimation problem
收藏 引用
MACHINE LEARNING 1997年 第1期27卷 97-119页
作者: Helmbold, DP Schapire, RE Singer, Y Warmuth, MK AT&T BELL LABS MURRAY HILLNJ 07974
We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple ... 详细信息
来源: 评论