A joint determination of horizontal and vertical movement of water through porous medium is addressed in this study through fast multi-output relevance vector regression (FMRVR). To do this, an experimental data set c...
详细信息
A joint determination of horizontal and vertical movement of water through porous medium is addressed in this study through fast multi-output relevance vector regression (FMRVR). To do this, an experimental data set conducted in a sand box with 300 x 300 x 150 mm dimensions made of Plexiglas is used. A random mixture of sand having size of 0.5-1 mm is used to simulate the porous medium. Within the experiments, 2, 3, 7, and 12 cm walls are used together with different injection locations as 130.7, 91.3, and 51.8 mm measured from the cutoff wall at the upstream. Then, the Cartesian coordinated of the tracer, time interval, length of the wall in each setup, and two dummy variables for determination of the initial point are considered as independent variables for joint estimation of horizontal and vertical velocity of water movement in the porous medium. Alternatively, the multi-linear regression, random forest, and the support vectorregression approaches are used to alternate the results obtained by the FMRVR method. It was concluded that the FMRVR outperforms the other models, while the uncertainty in estimation of horizontal penetration is larger than the vertical one.
fast multi-output relevance vector regression (FMRVR) algorithm is developed for simultaneous estimation of groundwater and lake water depth for the first time in this study. The FMRVR is a multi-outputregression ana...
详细信息
fast multi-output relevance vector regression (FMRVR) algorithm is developed for simultaneous estimation of groundwater and lake water depth for the first time in this study. The FMRVR is a multi-outputregression analysis technique which can simultaneously predict multiple outputs for a multi-dimensional input. The data used in this study is collected from 34 stations located in the lake Urmia basin over a 40-year time period. The performance of the FMRVR model is examined in contrast to the support vectorregression (SVR) and multi-linear regression (MLR) benchmarks. Results reveal that FMRVR is able to generate more accurate estimation for groundwater and lake water depth with coefficient of determination (R2) of 0.856 and 0.992 and root mean square error (RMSE) of 0.857 and 0.083, respectively. The outperformance of FMRVR can be linked to its capability for a joint estimation of multiple relevant outputs by taking into account possible correlations among the outputs.
The accurate and stable forecasting of carbon prices is vital for governors to make policies and essential for market participants to make investment decisions, which is important for promoting the development of carb...
详细信息
The accurate and stable forecasting of carbon prices is vital for governors to make policies and essential for market participants to make investment decisions, which is important for promoting the development of carbon markets and reducing carbon emissions in China. However, it is challenging to improve the carbon price forecasting accuracy due to its non-linearity and non-stationary characteristics, especially in multi-step-ahead forecasting. In this paper, a hybrid multi-step-ahead forecasting model based on variational mode decomposition (VMD), fast multi-output relevance vector regression (FMRVR), and the multi-objective whale optimization algorithm (MOWOA) is proposed. VMD is employed to extract the primary mode for the carbon price. Then, FMRVR, which is used as the forecasting module, is built on the preprocessed data. To achieve high accuracy and stability, the MOWOA is utilized to optimize the kernel parameter and input the lag of the FMRVR. The proposed hybrid forecasting model is applied to carbon price series from three major regional carbon emission exchanges in China. Results show that the proposed VMD-FMRVR-MOWOA model achieves better performance compared to several other multi-output models in terms of forecasting accuracy and stability. The proposed model can be a potential and effective technique for multi-step-ahead carbon price forecasting in China's three major regional emission exchanges.
暂无评论