咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 33 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 68 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 36 篇 计算机科学与技术...
    • 27 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 软件工程
    • 3 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 测绘科学与技术
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 13 篇 理学
    • 9 篇 物理学
    • 3 篇 生物学
    • 2 篇 地球物理学
    • 1 篇 地理学
  • 13 篇 医学
    • 13 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 中西医结合
    • 1 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 农学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学

主题

  • 68 篇 feature coding
  • 18 篇 image classifica...
  • 4 篇 image retrieval
  • 4 篇 text watermarkin...
  • 4 篇 bag-of-words
  • 4 篇 cnn
  • 4 篇 text steganograp...
  • 4 篇 feature extracti...
  • 4 篇 information secu...
  • 4 篇 vlad
  • 3 篇 pattern recognit...
  • 3 篇 binary descripto...
  • 3 篇 sparse coding
  • 3 篇 visual sensor ne...
  • 3 篇 cryptography
  • 3 篇 bag-of-features
  • 2 篇 restricted boltz...
  • 2 篇 ensemble learnin...
  • 2 篇 atc
  • 2 篇 person re-identi...

机构

  • 3 篇 inst super tecn ...
  • 2 篇 school of electr...
  • 2 篇 shanghai jiao to...
  • 2 篇 chinese acad agr...
  • 2 篇 tech univ munich...
  • 2 篇 chinese acad sci...
  • 2 篇 srm univ dept co...
  • 1 篇 univ sci & techn...
  • 1 篇 china aerodynam ...
  • 1 篇 peking univ sch ...
  • 1 篇 dgist dept iot &...
  • 1 篇 peking univ peop...
  • 1 篇 sapprft acad bro...
  • 1 篇 school of comput...
  • 1 篇 univ bristol dep...
  • 1 篇 mec dept cse bik...
  • 1 篇 delhi technol un...
  • 1 篇 jiangsu univ sci...
  • 1 篇 nanjing univ inf...
  • 1 篇 state grid smart...

作者

  • 5 篇 ascenso joao
  • 4 篇 pereira fernando
  • 3 篇 gao wen
  • 2 篇 wang ronggang
  • 2 篇 zhou weihong
  • 2 篇 wenmin wang
  • 2 篇 sheng sheng
  • 2 篇 li tan
  • 2 篇 brites catarina
  • 2 篇 van opdenbosch d...
  • 2 篇 wang wei
  • 2 篇 zhang maojun
  • 2 篇 li mengshan
  • 2 篇 ronggang wang
  • 2 篇 khan sungkrityay...
  • 2 篇 huang yongzhen
  • 2 篇 sankineni rishi
  • 2 篇 zhang liangpei
  • 2 篇 wang bin
  • 2 篇 duan ling-yu

语言

  • 64 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=feature coding"
68 条 记 录,以下是41-50 订阅
排序:
SPATIAL PYRAMID ALIGNMENT FOR SPARSE coding BASED OBJECT CLASSIFICATION  24
SPATIAL PYRAMID ALIGNMENT FOR SPARSE CODING BASED OBJECT CLA...
收藏 引用
24th IEEE International Conference on Image Processing (ICIP)
作者: Kim, Joonsoo Tahboub, Khalid Delp, Edward J. Purdue Univ Sch Elect & Comp Engn Video & Image Proc Lab VIPER W Lafayette IN 47907 USA
The bag of visual words (BOW) model is widely used for image representation and classification. Spatial pyramid based feature pooling utilizes the BOW model and is the most popular approach to capture the spatial dist... 详细信息
来源: 评论
Loss less Compression of Binary Image Descriptors for Visual Sensor Networks
Loss less Compression of Binary Image Descriptors for Visual...
收藏 引用
18th International Conference on Digital Signal Processing (DSP)
作者: Ascenso, Joao Pereira, Fernando Inst Super Engn Lisboa Inst Telecomun Lisbon Portugal Inst Super Tecn Inst Telecommun Lisbon Portugal
Nowadays, visual sensor networks have emerged as an important research area for distributed signal processing, with unique challenges in terms of performance, complexity, and resource allocation. In visual sensor netw... 详细信息
来源: 评论
Locally Linear Salient coding for Image Classification
Locally Linear Salient Coding for Image Classification
收藏 引用
12th International Workshop on Content-Based Multimedia Indexing (CBMI)
作者: Babaee, Mohammadreza Rigoll, Gerhard Bahmanyar, Reza Datcu, Mihai Tech Univ Munich Inst Human Machine Commun D-80290 Munich Germany German Aerosp Ctr DLR Remote Sensing Technol Inst IMF Oberpfaffenhofen Germany
Representing images with their descriptive features is the fundamental problem in CBIR. feature coding as a key-step in feature description has attracted the attentions in recent years. Among the proposed coding strat... 详细信息
来源: 评论
FLEXIBLE RATE ALLOCATION FOR LOCAL BINARY feature COMPRESSION  25
FLEXIBLE RATE ALLOCATION FOR LOCAL BINARY FEATURE COMPRESSIO...
收藏 引用
25th IEEE International Conference on Image Processing (ICIP)
作者: Van Opdenbosch, Dominik Steinbach, Eckehard Tech Univ Munich Chair Media Technol Munich Germany
Numerous real-time applications in computer vision rely on finding correspondences between local binary features. In many mobile scenarios, the visual information captured at a sensor node needs to be transmitted to a... 详细信息
来源: 评论
IMAGE CLASSIFICATION USING RBM TO ENCODE LOCAL DESCRIPTORS WITH GROUP SPARSE LEARNING
IMAGE CLASSIFICATION USING RBM TO ENCODE LOCAL DESCRIPTORS W...
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Wang, Jinzhu Wang, Wenmin Wang, Ronggang Gao, Wen Peking Univ Shenzhen Grad Sch Sch Elect & Comp Engn Shenzhen Peoples R China Peking Univ Natl Engn Lab Video Technol Beijing Peoples R China
This paper proposes to employ deep learningmodel to encode local descriptors for image classification. Previous works using deep architectures to obtain higher representations are often operated from pixel level, whic... 详细信息
来源: 评论
MULTI-VIEW DISTRIBUTED SOURCE coding OF BINARY featureS FOR VISUAL SENSOR NETWORKS  41
MULTI-VIEW DISTRIBUTED SOURCE CODING OF BINARY FEATURES FOR ...
收藏 引用
41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Monteiro, Nuno Brites, Catarina Pereira, Fernando Ascenso, Joao Inst Super Tecn Inst Telecomunicacoes Lisbon Portugal
Visual analysis algorithms have been mostly developed for a centralized scenario where all visual data is acquired and processed at a central location. However, in visual sensor networks (VSN), several constraints in ... 详细信息
来源: 评论
Scene Image Classification Based on Improved VLAD Reprensentation
Scene Image Classification Based on Improved VLAD Reprensent...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhang, Zhiyi Long, Xianzhong Li, Yun Nanjing Univ Posts & Telecommun Sch Comp Sci & Technol Sch Software Nanjing 210023 Peoples R China
Vector of Locally Aggregated Descriptors (VLAD) method, which aggregates descriptors and produces a compact image representation, has achieved great success in the field of image classification and retrieval. However,... 详细信息
来源: 评论
Encoding the Regional features for Person Re-identification using Locality-constrained Linear coding
Encoding the Regional Features for Person Re-identification ...
收藏 引用
International Conference on Computers, Communications and Systems (ICCCS)
作者: Li, Junnan Yang, Zhen Xiong, Huilin Shanghai Jiao Tong Univ Dept Automat Shanghai Peoples R China
This paper presents a coding method for person re-identification, based on Locality-constrained Linear coding (LLC), utilizing the locality constraints to project each descriptor into its local-coordinate system, in w... 详细信息
来源: 评论
Czech Text Steganography Method by Selective Hiding Technique
Czech Text Steganography Method by Selective Hiding Techniqu...
收藏 引用
World Congress on Engineering (WCE)
作者: Khan, Sungkrityayan Sankineni, Rishi Balagurunathan, Padmavathi Shree, Nujerlla Suresh Divya Balasubramanian, Abinaya SRM Univ Madras Tamil Nadu India SRM Univ Dept Comp Sci Madras Tamil Nadu India SRM Univ Dept Comp Sci & Engn Madras Tamil Nadu India
In this paper we have presented a novel approach of steganography which is suitable for Czech texts. The approach can be assorted under selective hiding method of text steganography. This approach involves the conceal... 详细信息
来源: 评论
Palm Vein for Efficient Person Recognition Based on 2D Gabor Filter
Palm Vein for Efficient Person Recognition Based on 2D Gabor...
收藏 引用
Conference on Biometric and Surveillance Technology for Human and Activity Identification X
作者: Wang, Jixing He, Yuqing Zhu, Jiadan Gao, Xinru Cui, Yongsheng Beijing Inst Technol Sch Optoelect Minist Educ China Key Lab Photoelect Imaging Technol & Syst Beijing 100081 Peoples R China
Palm vein recognition is a relatively new method in biometrics. This paper presents an effective palm vein feature extraction approach for improving the efficiency of palm vein identification. In this paper, relevant ... 详细信息
来源: 评论