咨询与建议

限定检索结果

文献类型

  • 9,169 篇 会议
  • 1,179 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 10,349 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,347 篇 工学
    • 1,393 篇 电气工程
    • 750 篇 计算机科学与技术...
    • 493 篇 信息与通信工程
    • 383 篇 控制科学与工程
    • 248 篇 仪器科学与技术
    • 161 篇 电子科学与技术(可...
    • 160 篇 软件工程
    • 128 篇 机械工程
    • 97 篇 航空宇航科学与技...
    • 59 篇 测绘科学与技术
    • 49 篇 生物医学工程(可授...
    • 28 篇 交通运输工程
    • 27 篇 核科学与技术
    • 22 篇 石油与天然气工程
    • 18 篇 网络空间安全
    • 15 篇 动力工程及工程热...
    • 12 篇 土木工程
    • 12 篇 环境科学与工程(可...
    • 11 篇 船舶与海洋工程
  • 387 篇 理学
    • 188 篇 物理学
    • 112 篇 系统科学
    • 33 篇 地球物理学
    • 30 篇 数学
    • 12 篇 地理学
  • 126 篇 医学
    • 104 篇 临床医学
    • 22 篇 特种医学
  • 120 篇 管理学
    • 115 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
  • 29 篇 文学
    • 29 篇 新闻传播学
  • 17 篇 农学
    • 11 篇 农业资源与环境
  • 6 篇 艺术学
  • 5 篇 经济学
  • 5 篇 军事学
  • 4 篇 教育学

主题

  • 10,349 篇 filtering algori...
  • 1,683 篇 adaptive filters
  • 1,085 篇 signal processin...
  • 956 篇 algorithm design...
  • 888 篇 information filt...
  • 859 篇 filtering
  • 768 篇 kalman filters
  • 649 篇 convergence
  • 517 篇 least squares ap...
  • 517 篇 target tracking
  • 481 篇 noise
  • 463 篇 nonlinear filter...
  • 452 篇 noise reduction
  • 447 篇 noise measuremen...
  • 438 篇 feature extracti...
  • 425 篇 image edge detec...
  • 398 篇 filtering theory
  • 359 篇 finite impulse r...
  • 350 篇 filters
  • 335 篇 signal processin...

机构

  • 17 篇 school of inform...
  • 17 篇 school of electr...
  • 17 篇 department of el...
  • 16 篇 southwest jiaoto...
  • 15 篇 university of ch...
  • 15 篇 beijing universi...
  • 13 篇 department of el...
  • 13 篇 zhejiang busines...
  • 13 篇 signal processin...
  • 12 篇 information syst...
  • 11 篇 department of el...
  • 11 篇 department of el...
  • 11 篇 school of electr...
  • 11 篇 southwest jiaoto...
  • 10 篇 department of el...
  • 10 篇 school of inform...
  • 10 篇 inrs-emt univers...
  • 10 篇 department of el...
  • 10 篇 harbin institute...
  • 10 篇 school of electr...

作者

  • 17 篇 w.k. jenkins
  • 16 篇 zhao haiquan
  • 15 篇 jacob benesty
  • 15 篇 shin'ichi koike
  • 13 篇 wei li
  • 12 篇 t. kailath
  • 12 篇 y. zhou
  • 11 篇 li zhang
  • 11 篇 asutosh kar
  • 10 篇 kailath t
  • 10 篇 s.c. chan
  • 10 篇 songjie gong
  • 9 篇 d.t.m. slock
  • 9 篇 t. bose
  • 9 篇 j. astola
  • 9 篇 j.k. tugnait
  • 9 篇 jun hu
  • 8 篇 lei wang
  • 8 篇 jian wang
  • 8 篇 ming li

语言

  • 10,174 篇 英文
  • 142 篇 其他
  • 29 篇 中文
  • 2 篇 俄文
  • 1 篇 西班牙文
  • 1 篇 土耳其文
检索条件"主题词=filtering algorithms"
10349 条 记 录,以下是591-600 订阅
排序:
Ground Moving Target Indication via Coprime Array MIMO 2-D-VSAR Joint EGO-DPCA Filter
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷 1页
作者: Najian, Negar Sebt, Mohammad Ali Hosein Oveis, Amir K N Toosi Univ Technol Dept Elect Engn Tehran *** Iran Univ Pisa Radar & Surveillance Syst RaSS Lab Natl Interuniv Consortium Telecommun CNIT I-56124 Pisa Italy Univ Pisa Dept Informat Engn I-56124 Pisa Italy
The velocity synthetic aperture radar (VSAR) algorithm is a method used for slow ground-moving target indication (GMTI) and parameter estimation based on array processing. However, this method is limited by an expensi... 详细信息
来源: 评论
A Linear Comb Filter for Event Flicker Removal  39
A Linear Comb Filter for Event Flicker Removal
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Wang, Ziwei Yuan, Dingran Ng, Yonhon Mahony, Robert Australian Natl Univ Coll Engn & Comp Sci Syst Theory & Robot Grp Canberra ACT Australia
Event cameras are bio-inspired sensors that capture per-pixel asynchronous intensity change rather than the synchronous absolute intensity frames captured by a classical camera sensor. Such cameras are ideal for robot... 详细信息
来源: 评论
Backstepping Mean-Field Density Control for Large-Scale Heterogeneous Nonlinear Stochastic Systems
Backstepping Mean-Field Density Control for Large-Scale Hete...
收藏 引用
American Control Conference (ACC)
作者: Zheng, Tongjia Han, Qing Lin, Hai Univ Notre Dame Dept Elect Engn Notre Dame IN 46556 USA Univ Notre Dame Dept Math Notre Dame IN 46556 USA
This work studies the problem of controlling the mean-field density of large-scale stochastic systems, which has applications in various fields such as swarm robotics. Recently, there is a growing amount of literature... 详细信息
来源: 评论
Semantic Network Interpretation
Semantic Network Interpretation
收藏 引用
22nd IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
作者: Guo, Pei Farrell, Ryan Brigham Young Univ Provo UT 84602 USA
Network interpretation as an effort to reveal the features learned by a network remains largely visualization-based. In this paper, our goal is to tackle semantic network interpretation at both filter and decision lev... 详细信息
来源: 评论
Improved Kalman-Particle Kernel Filter on Lie Groups Applied to Angles-Only UAV Navigation  39
Improved Kalman-Particle Kernel Filter on Lie Groups Applied...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Chahbazian, Clement Dahia, Karim Merlinge, Nicolas Winter-Bonnet, Benedicte Honore, Kevin Musso, Christian Off Natl Etud & Rech Aerosp French Aerosp Lab Informat & Signals Dept Palaiseau France MBDA France Dept Guidance Control & Nav Le Plessis Robinson France
Kalman-Particle Kernel Filter (KPKF) is a sub-class of Particle Filter (PF) that uses Gaussian kernels as particles, which enables a local Kalman update for each measurement in addition to the usual weight update. Bes... 详细信息
来源: 评论
Adaptive algorithm for vessel roll prediction based on the Bayesian approach  30
Adaptive algorithm for vessel roll prediction based on the B...
收藏 引用
30th Mediterranean Conference on Control and Automation (MED)
作者: Stepanov, Oleg A. Litvinenko, Yulia A. Antonov, Danila, V Zaitsev, Oleg, V ITMO Univ JSC Concern CSRI Elektropribor St Petersburg Russia
The problem of vessel roll prediction is considered within the framework of the Bayesian approach;the proposed adaptive algorithm for its solution is described. The advantages of the proposed algorithm are discussed, ... 详细信息
来源: 评论
A Distributed Adaptive Algorithm for Non-Smooth Spatial filtering Problems
A Distributed Adaptive Algorithm for Non-Smooth Spatial Filt...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Charles Hovine Alexander Bertrand Department of Electrical Engineering (ESAT) KU Leuven Leuven Belgium Stadius Center for Dynamical Systems Signal Processing and Data Analytics Leuven Belgium KU Leuven Institute for Artificial Intelligence (Leuven.AI) Leuven Belgium
Computing the optimal solution to a spatial filtering problems in a Wireless Sensor Network can incur large bandwidth and computational requirements if an approach relying on data centralization is used. The so-called... 详细信息
来源: 评论
S-MKI: Incremental Dense Semantic Occupancy Reconstruction Through Multi-Entropy Kernel Inference
S-MKI: Incremental Dense Semantic Occupancy Reconstruction T...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Deng, Yinan Wang, Meiling Wang, Danwei Yue, Yufeng Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore
Autonomous robots are often required to acquire high-level prior knowledge by continuously reconstructing the semantics and geometry of the surrounding scene, which is the basis of exploration and planning. Most exist... 详细信息
来源: 评论
Conditional entropy minimization principle for learning domain invariant representation features  26
Conditional entropy minimization principle for learning doma...
收藏 引用
26th International Conference on Pattern Recognition / 8th International Workshop on Image Mining - Theory and Applications (IMTA)
作者: Nguyen, Thuan Lyu, Boyang Ishwar, Prakash Scheutz, Matthias Aeron, Shuchin Tufts Univ Dept Elect & Comp Engn Medford MA 02155 USA Boston Univ Dept Elect & Comp Engn Boston MA 02215 USA Tufts Univ Dept Comp Sci Medford MA 02155 USA
Invariance-principle-based methods such as Invariant Risk Minimization (IRM), have recently emerged as promising approaches for Domain Generalization (DG). Despite promising theory, such approaches fail in common clas... 详细信息
来源: 评论
Uncertainty Aware EKF: a Tracking Filter Learning LiDAR Measurement Uncertainty  25
Uncertainty Aware EKF: a Tracking Filter Learning LiDAR Meas...
收藏 引用
25th International Conference of Information Fusion (FUSION)
作者: Xu, Liang Niu, Ruixin Blasch, Erik P. Virginia Commonwealth Univ Richmond VA 23284 USA Air Force Off Sci Res Arlington VA 22203 USA
In this paper, an extended Kalman filter (EKF) framework, called uncertainty aware EKF (UA-EKF), is developed by utilizing contextual knowledge to improve the vehicle tracking accuracy for autonomous vehicles. The pro... 详细信息
来源: 评论