咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 11 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 4 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 1 篇 理学
    • 1 篇 物理学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 14 篇 fixed-point quan...
  • 4 篇 deep neural netw...
  • 3 篇 fpga
  • 2 篇 step size adapta...
  • 2 篇 structured spars...
  • 2 篇 deep neural netw...
  • 2 篇 quantization (si...
  • 2 篇 field programmab...
  • 2 篇 convolutional ne...
  • 2 篇 recurrent neural...
  • 1 篇 power demand
  • 1 篇 respiratory soun...
  • 1 篇 no retraining
  • 1 篇 learning accurac...
  • 1 篇 object detection
  • 1 篇 pruning algorith...
  • 1 篇 yolov4
  • 1 篇 deep learning
  • 1 篇 computational co...
  • 1 篇 hardware acceler...

机构

  • 1 篇 nanjing univ inf...
  • 1 篇 univ michigan de...
  • 1 篇 huaihua univ sch...
  • 1 篇 univ freiburg au...
  • 1 篇 seoul natl univ ...
  • 1 篇 astar inst micro...
  • 1 篇 univ southern ca...
  • 1 篇 seoul natl univ ...
  • 1 篇 beijing universi...
  • 1 篇 robert bosch gmb...
  • 1 篇 seoul natl univ ...
  • 1 篇 chinese acad sci...
  • 1 篇 hunan univ shenz...
  • 1 篇 robert bosch gmb...
  • 1 篇 department of el...
  • 1 篇 nanyang technol ...
  • 1 篇 seoul natl univ ...
  • 1 篇 tsinghua univ de...
  • 1 篇 natl univ def te...
  • 1 篇 alibaba grp mach...

作者

  • 3 篇 boo yoonho
  • 3 篇 sung wonyong
  • 1 篇 chen yuedan
  • 1 篇 li kenli
  • 1 篇 hu jinhai
  • 1 篇 enderich lukas
  • 1 篇 shixuan guo
  • 1 篇 liu qingshan
  • 1 篇 leow cong sheng
  • 1 篇 yang yi-hua edwa...
  • 1 篇 cheng anda
  • 1 篇 kim hyun
  • 1 篇 cheng jian
  • 1 篇 prasanna viktor
  • 1 篇 lei feng
  • 1 篇 huang chenglong
  • 1 篇 jiang haoyang
  • 1 篇 duan mingxing
  • 1 篇 zerui zhen
  • 1 篇 fang liang

语言

  • 14 篇 英文
检索条件"主题词=fixed-point quantization"
14 条 记 录,以下是1-10 订阅
排序:
Zero-Centered fixed-point quantization With Iterative Retraining for Deep Convolutional Neural Network-Based Object Detectors
收藏 引用
IEEE ACCESS 2021年 9卷 20828-20839页
作者: Kim, Sungrae Kim, Hyun Seoul Natl Univ Sci & Technol Dept Elect & Informat Engn Seoul 01811 South Korea Seoul Natl Univ Sci & Technol Res Ctr Elect & Informat Technol Seoul 01811 South Korea
In the field of object detection, deep learning has greatly improved accuracy compared to previous algorithms and has been used widely in recent years. However, object detection using deep learning requires many hardw... 详细信息
来源: 评论
A Secure and Effective Energy-Aware fixed-point quantization Scheme for Asynchronous Federated Learning
收藏 引用
Computers, Materials & Continua 2023年 第5期75卷 2939-2955页
作者: Zerui Zhen Zihao Wu Lei Feng Wenjing Li Feng Qi Shixuan Guo Beijing University of Posts and Telecommunication Beijing100876China Vanderbilt University Nashville TN37240USA
Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data ***,the frequent exchange of mas... 详细信息
来源: 评论
SYMOG: Learning symmetric mixture of Gaussian modes for improved fixed-point quantization
收藏 引用
NEUROCOMPUTING 2020年 416卷 310-315页
作者: Enderich, Lukas Timm, Fabian Burgard, Wolfram Robert Bosch GmbH Chassis Syst Control Engn Cognit Syst Gerlingen Germany Robert Bosch GmbH Corp Res Vehicle Safety & Autom Gerlingen Germany Univ Freiburg Autonomous Intelligent Syst Freiburg Germany
Deep neural networks (DNNs) have been proven to outperform classical methods on several machine learning benchmarks. However, they have high computational complexity and require powerful processing units. Especially w... 详细信息
来源: 评论
Throughput-Optimized Frequency Domain CNN with fixed-point quantization on FPGA
Throughput-Optimized Frequency Domain CNN with Fixed-Point Q...
收藏 引用
International Conference on Reconfigurable Computing and FPGAs (ReConFig)
作者: Sun, Weiyi Zeng, Hanqing Yang, Yi-hua Edward Prasanna, Viktor Tsinghua Univ Dept Microelect & Nanoelect Beijing Peoples R China Univ Southern Calif Ming Hsieh Dept Elect Engn Los Angeles CA 90089 USA Alibaba Grp Machine Intelligence Technol Hangzhou Zhejiang Peoples R China
State-of-the-art hardware accelerators for large scale CNNs face two challenges: high computation complexity of convolution, and high on-chip memory consumption by weight kernels. Two techniques have been proposed in ... 详细信息
来源: 评论
Unsupervised Network quantization via fixed-point Factorization
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021年 第6期32卷 2706-2720页
作者: Wang, Peisong He, Xiangyu Chen, Qiang Cheng, Anda Liu, Qingshan Cheng, Jian Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100049 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China Nanjing Univ Informat Sci & Technol B Data Lab Nanjing 210044 Peoples R China
The deep neural network (DNN) has achieved remarkable performance in a wide range of applications at the cost of huge memory and computational complexity. fixed-point network quantization emerges as a popular accelera... 详细信息
来源: 评论
Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-Time Respiratory Sound Classification
收藏 引用
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025年 第1期19卷 185-195页
作者: Hu, Jinhai Leow, Cong Sheng Tao, Shuailin Goh, Wang Ling Gao, Yuan Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore ASTAR Inst Microelect IME Singapore 138634 Singapore Univ Michigan Dept Elect & Comp Engn Ann Arbor MI 48109 USA
This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monito... 详细信息
来源: 评论
MXQN:Mixed quantization for reducing bit-width of weights and activations in deep convolutional neural networks
收藏 引用
APPLIED INTELLIGENCE 2021年 第7期51卷 4561-4574页
作者: Huang, Chenglong Liu, Puguang Fang, Liang Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Peoples R China
quantization, which involves bit-width reduction, is considered as one of the most effective approaches to rapidly and energy-efficiently deploy deep convolutional neural networks (DCNNs) on resource-constrained embed... 详细信息
来源: 评论
Compression of Deep Neural Networks with Structured Sparse Ternary Coding
收藏 引用
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY 2019年 第9期91卷 1009-1019页
作者: Boo, Yoonho Sung, Wonyong Seoul Natl Univ Neural Proc Res Ctr Sch Elect Engn Seoul 151744 South Korea
Deep neural networks (DNNs) contain large number of weights, and usually require many off-chip memory accesses for inference. Weight size compression is a major requirement for on-chip memory based implementation of D... 详细信息
来源: 评论
APPQ-CNN: An Adaptive CNNs Inference Accelerator for Synergistically Exploiting Pruning and quantization Based on FPGA
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING
收藏 引用
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 2024年 第6期9卷 874-888页
作者: Zhang, Xian Xiao, Guoqing Duan, Mingxing Chen, Yuedan Li, Kenli Huaihua Univ Sch Comp & Artificial Intelligence Huaihua 418000 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Peoples R China Hunan Univ Shenzhen Inst Shenzhen 518063 Peoples R China
Convolutional neural networks (CNNs) are widely utilized in intelligent edge computing applications such as computational vision and image processing. However, as the number of layers of the CNN model increases, the n... 详细信息
来源: 评论
SkeletonGCN: A Simple Yet Effective Accelerator For GCN Training  32
SkeletonGCN: A Simple Yet Effective Accelerator For GCN Trai...
收藏 引用
32nd International Conference on Field-Programmable Logic and Applications (FPL)
作者: Wu, Chen Tao, Zhuofu Wang, Kun He, Lei Univ Calif Los Angeles Elect & Comp Engn Los Angeles CA 90024 USA
Graph Convolutional Networks (GCNs) have shown great results but come with large computation costs and memory overhead. Recently, sampling-based approaches have been proposed to alter input sizes, which allows large G... 详细信息
来源: 评论