algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset...
详细信息
algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph. In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.
In previous work on source coding over noisy channels it was recognized that when the source has memory, there is typically "residual redundancy" between the discrete symbols produced by the encoder, which c...
详细信息
In previous work on source coding over noisy channels it was recognized that when the source has memory, there is typically "residual redundancy" between the discrete symbols produced by the encoder, which can be capitalized upon by the decoder to improve the overall quantizer performance. Sayood and Borkenhagen and Phamdo and Farvardin proposed "detectors" at the decoder which optimize suitable criteria in order to estimate the sequence of transmitted symbols. Phamdo and Farvardin also proposed an instantaneous approximate minimum mean-squared error (IAMMSE) decoder. These methods provide a performance advantage over conventional systems, but the maximum a posteriori (MAP) structure is suboptimal, while the IAMMSE decoder makes limited use of the redundancy. Alternatively, combining aspects of both approaches, we propose a sequence-based approximate MMSE (SAMMSE) decoder. For a Markovian sequence of encoder-produced symbols and a discrete memoryless channel, we approximate the expected distortion at the decoder under the constraint of fixed decoder complexity. For this simplified cost, the optimal decoder computes expected values based on a discrete hidden Markov model, using the well-known forward/backward (F/B) algorithm. Performance gains for this scheme are demonstrated over previous techniques in quantizing Gauss-Markov sources over a range of noisy channel conditions. Moreover, a constrained delay version is also suggested.
暂无评论