咨询与建议

限定检索结果

文献类型

  • 82 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 理学
    • 78 篇 数学
    • 6 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 14 篇 工学
    • 10 篇 计算机科学与技术...
    • 5 篇 力学(可授工学、理...
    • 3 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程

主题

  • 85 篇 fractal interpol...
  • 31 篇 fractals
  • 25 篇 iterated functio...
  • 9 篇 box dimension
  • 8 篇 positivity
  • 8 篇 iterated functio...
  • 7 篇 fractal interpol...
  • 7 篇 interpolation
  • 6 篇 hausdorff dimens...
  • 5 篇 fractal dimensio...
  • 4 篇 monotonicity
  • 4 篇 rational cubic i...
  • 4 篇 rational cubic f...
  • 4 篇 blending functio...
  • 3 篇 rakotch contract...
  • 3 篇 convexity
  • 3 篇 alpha-fractal in...
  • 2 篇 least squares ap...
  • 2 篇 random data sets
  • 2 篇 28a80

机构

  • 6 篇 vellore inst tec...
  • 6 篇 indian inst tech...
  • 4 篇 indian inst tech...
  • 4 篇 i shou univ dept...
  • 4 篇 univ zaragoza ct...
  • 4 篇 indian inst tech...
  • 4 篇 indian inst tech...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ zaragoza de...
  • 3 篇 srm inst sci & t...
  • 2 篇 indian inst tech...
  • 2 篇 univ zaragoza de...
  • 2 篇 univ zaragoza fa...
  • 2 篇 univ zaragoza de...
  • 2 篇 zhejiang univ de...
  • 2 篇 indian inst tech...
  • 2 篇 univ thessaly de...
  • 2 篇 univ zaragoza es...
  • 1 篇 politecn torino ...
  • 1 篇 yonsei univ yons...

作者

  • 21 篇 navascues m. a.
  • 18 篇 chand a. k. b.
  • 6 篇 gowrisankar a.
  • 5 篇 katiyar s. k.
  • 5 篇 luor dah-chin
  • 5 篇 vijender n.
  • 4 篇 verma manuj
  • 4 篇 priyadarshi amit
  • 4 篇 prasad m. guru p...
  • 4 篇 akhtar md. nasim
  • 4 篇 bouboulis p.
  • 4 篇 priyanka t. m. c...
  • 4 篇 navascues maria ...
  • 4 篇 sebastian m. v.
  • 3 篇 agathiyan a.
  • 3 篇 navascués ma
  • 2 篇 tyada k. r.
  • 2 篇 haseyama m
  • 2 篇 sebastián mv
  • 2 篇 massopust p. r.

语言

  • 73 篇 英文
  • 12 篇 其他
检索条件"主题词=fractal interpolation functions"
85 条 记 录,以下是1-10 订阅
排序:
On the integral transform of fractal interpolation functions
收藏 引用
MATHEMATICS AND COMPUTERS IN SIMULATION 2024年 222卷 209-224页
作者: Agathiyan, A. Gowrisankar, A. Fataf, Nur Aisyah Abdul Vellore Inst Technol Sch Adv Sci Dept Math Vellore 632014 Tamil Nadu India Univ Pertahanan Nas Malaysia Cyber Secur & Digital Ind Revolut Ctr Kuala Lumpur Malaysia
This paper explores the integral transform of two distinct fractal interpolation functions, namely the linear fractal interpolation function and the hidden variable fractal interpolation function with variable scaling... 详细信息
来源: 评论
Multifractal analysis of fractal interpolation functions
收藏 引用
PHYSICA SCRIPTA 2024年 第11期99卷 115230-115230页
作者: Priyanka, T. M. C. Gowrisankar, A. Vellore Inst Technol Sch Adv Sci Dept Math Vellore 632014 Tamil Nadu India
This paper presents a novel algorithm to utilize multifractal spectrum as a quantitative measure for the fractal interpolation functions with respect to scaling factor and fractional order. As of yet, there were no er... 详细信息
来源: 评论
Remarks on the integral transform of non-linear fractal interpolation functions
收藏 引用
CHAOS SOLITONS & fractalS 2023年 第1期173卷
作者: Agathiyan, A. Gowrisankar, A. Fataf, Nur Aisyah Abdul Cao, Jinde Vellore Inst Technol Sch Adv Sci Dept Math Vellore 632014 Tamil Nadu India Univ Pertahanan Nas Malaysia Cyber Secur & Digital Ind Revolut Ctr Kuala Lumpur 57000 Malaysia Southeast Univ Sch Math Nanjing 210096 Peoples R China Yonsei Univ Yonsei Frontier Lab Seoul 03722 South Korea
This paper examines the integral transform of fractal interpolation functions with function scaling factors. Initially, the integral transform of quadratic fractal interpolation function, quadratic hidden variable fra... 详细信息
来源: 评论
Construction of New fractal interpolation functions Through Integration Method
收藏 引用
RESULTS IN MATHEMATICS 2022年 第3期77卷 1-20页
作者: Agathiyan, A. Gowrisankar, A. Priyanka, T. M. C. Vellore Inst Technol Sch Adv Sci Dept Math Vellore 632014 Tamil Nadu India
This paper investigates the classical integral of various types of fractal interpolation functions namely linear fractal interpolation function, alpha-fractal function and hidden variable fractal interpolation functio... 详细信息
来源: 评论
CONSTRUCTION OF MONOTONOUS APPROXIMATION BY fractal interpolation functions AND fractal DIMENSIONS
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2024年 第2期32卷 2440006-2440006页
作者: Yu, Binyan Liang, Yongshun Nanjing Univ Sci & Technol Sch Math & Stat Nanjing 210094 Peoples R China
In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has be... 详细信息
来源: 评论
fractal MULTIQUADRIC interpolation functions
收藏 引用
SIAM JOURNAL ON NUMERICAL ANALYSIS 2024年 第5期62卷 2349-2369页
作者: Kumar, D. Chand, A. K. B. Massopust, P. R. Indian Inst Technol Madras Dept Math Chennai 600036 India Tech Univ Munich Dept Math D-85748 Garching Germany
In this article, we impose fractal features onto classical multiquadric (MQ) functions. This generates a novel class of fractal functions, called fractal MQ functions, where the symmetry of the original MQ function wi... 详细信息
来源: 评论
REVIEW ON fractal interpolation functions
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2025年
作者: Priyanka, T. M. C. Gowrisankar, A. Vellore Inst Technol Sch Adv Sci Dept Math Vellore 632014 Tamil Nadu India
The idea of fractal interpolation dates back to the 1980s, however several recent developments on its new types and generalization frameworks have made this domain ripe for extensions, further analyses, and reliable a... 详细信息
来源: 评论
fractal interpolation functions for random data sets
收藏 引用
CHAOS SOLITONS & fractalS 2018年 114卷 256-263页
作者: Luor, Dah-Chin I Shou Univ Dept Financial & Computat Math 1Sec 1Syuecheng Rd Kaohsiung 84001 Taiwan
Let x(0) < x(1) < x(2) < ... < x(N) and I = [x(0,) x(N)]. Let u be a continuous function defined on I and let Delta(mu) = {(x(k), mu(k)) : k = 0, 1,..., N}, where mu(k) = u(x(k)). We establish a fractal in... 详细信息
来源: 评论
fractal interpolation functions with partial self similarity
收藏 引用
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2018年 第1期464卷 911-923页
作者: Luor, Dah-Chin I Shou Univ Dept Financial & Computat Math 1Sec 1Syuecheng Road Kaohsiung 84001 Taiwan
Let a data set Delta = {(t(i), y(i)) is an element of R x Y : i = 0,1, . . . ,N} be given, where t(0) I-k is a homeomorphism and M-k : J(k) x Y -> Y is continuous. Here I-k = [t(k-1),t(k)] and J(k) = [t(j(k)),t(1(... 详细信息
来源: 评论
BOX DIMENSION OF WEYL-MARCHAUD FRACTIONAL DERIVATIVE OF LINEAR fractal interpolation functions
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2019年 第4期27卷
作者: Peng, Wen Liang Yao, Kui Zhang, Xia Yao, Jia Army Univ Engn PLA Nanjing 211101 Jiangsu Peoples R China Nanjing Univ Sci & Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China
This paper mainly explores Weyl-Marchaud fractional derivative of linear fractal interpolation functions (FIFs). We prove that Weyl-Marchaud fractional derivative of a linear FIF is still a linear FIFs. More generally... 详细信息
来源: 评论