咨询与建议

限定检索结果

文献类型

  • 82 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 理学
    • 78 篇 数学
    • 6 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 14 篇 工学
    • 10 篇 计算机科学与技术...
    • 5 篇 力学(可授工学、理...
    • 3 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程

主题

  • 85 篇 fractal interpol...
  • 31 篇 fractals
  • 25 篇 iterated functio...
  • 9 篇 box dimension
  • 8 篇 positivity
  • 8 篇 iterated functio...
  • 7 篇 fractal interpol...
  • 7 篇 interpolation
  • 6 篇 hausdorff dimens...
  • 5 篇 fractal dimensio...
  • 4 篇 monotonicity
  • 4 篇 rational cubic i...
  • 4 篇 rational cubic f...
  • 4 篇 blending functio...
  • 3 篇 rakotch contract...
  • 3 篇 convexity
  • 3 篇 alpha-fractal in...
  • 2 篇 least squares ap...
  • 2 篇 random data sets
  • 2 篇 28a80

机构

  • 6 篇 vellore inst tec...
  • 6 篇 indian inst tech...
  • 4 篇 indian inst tech...
  • 4 篇 i shou univ dept...
  • 4 篇 univ zaragoza ct...
  • 4 篇 indian inst tech...
  • 4 篇 indian inst tech...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ zaragoza de...
  • 3 篇 srm inst sci & t...
  • 2 篇 indian inst tech...
  • 2 篇 univ zaragoza de...
  • 2 篇 univ zaragoza fa...
  • 2 篇 univ zaragoza de...
  • 2 篇 zhejiang univ de...
  • 2 篇 indian inst tech...
  • 2 篇 univ thessaly de...
  • 2 篇 univ zaragoza es...
  • 1 篇 politecn torino ...
  • 1 篇 yonsei univ yons...

作者

  • 21 篇 navascues m. a.
  • 18 篇 chand a. k. b.
  • 6 篇 gowrisankar a.
  • 5 篇 katiyar s. k.
  • 5 篇 luor dah-chin
  • 5 篇 vijender n.
  • 4 篇 verma manuj
  • 4 篇 priyadarshi amit
  • 4 篇 prasad m. guru p...
  • 4 篇 akhtar md. nasim
  • 4 篇 bouboulis p.
  • 4 篇 priyanka t. m. c...
  • 4 篇 navascues maria ...
  • 4 篇 sebastian m. v.
  • 3 篇 agathiyan a.
  • 3 篇 navascués ma
  • 2 篇 tyada k. r.
  • 2 篇 haseyama m
  • 2 篇 sebastián mv
  • 2 篇 massopust p. r.

语言

  • 73 篇 英文
  • 12 篇 其他
检索条件"主题词=fractal interpolation functions"
85 条 记 录,以下是31-40 订阅
排序:
Parameter Identification for Constrained Data Using a New Class of Rational fractal functions
收藏 引用
NUMERICAL ANALYSIS AND APPLICATIONS 2021年 第3期14卷 225-237页
作者: Katiyar, S. K. Chand, A. K. B. Jha, S. SRM Inst Sci & Technol Dept Math Chennai Tamil Nadu India Indian Inst Technol Madras Dept Math Chennai Tamil Nadu India Natl Inst Technol Dept Math Rourkela India
This paper sets a theoretical foundation for applications of fractal interpolation functions (FIFs). We construct rational cubic spline FIFs (RCSFIFs) with a quadratic denominator involving two shape parameters. The e... 详细信息
来源: 评论
CONSTRUCTION OF fractal SURFACES
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2020年 第2期28卷
作者: Navascues, M. A. Mohapatra, R. N. Akittar, M. N. Univ Zaragoza Escuela Ingn & Arguitectura C Maria de Luna 3 Zaragoza 50018 Spain Univ Cent Florida Dept Math 4393 Andromeda Loop Orlando FL 32816 USA Aliah Univ Dept Math & Stat Kolkata 700156 India
The paper approaches the construction of fractal surfaces of interpolation and approximation on the basis of a fractal perturbation of any mapping defined on a rectangle. Conditions for the differentiability of these ... 详细信息
来源: 评论
MULTIVARIATE AFFINE fractal interpolation
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2020年 第7期28卷
作者: Navascues, M. A. Katiyar, S. K. Chand, A. K. B. Univ Zaragoza Dept Matemat Aplicada C Maria de Luna 3 Zaragoza 50018 Spain SRM Inst Sci & Technol Dept Math Chennai 603203 Tamil Nadu India Indian Inst Technol Madras Dept Math Chennai 600036 Tamil Nadu India
fractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world si... 详细信息
来源: 评论
On the distributions of fractal functions that interpolate data points with Gaussian noise
收藏 引用
CHAOS SOLITONS & fractalS 2020年 135卷 109743-109743页
作者: Luor, Dah-Chin I Shou Univ Dept Financial & Computat Math 1Sec 1Syuecheng Rd Kaohsiung 84001 Taiwan
We first construct a fractal interpolation function f() corresponding to the data set Delta(mu) = {(x(k), mu(k)) : k = 0, 1,, N}, where x(0) ) corresponding to the set Delta(Y) = {(x(k), Y-k) : k = 0,1,...,N}. All val... 详细信息
来源: 评论
Approximation by shape preserving fractal functions with variable scalings
收藏 引用
CALCOLO 2021年 第1期58卷 8-8页
作者: Jha, Sangita Chand, A. K. B. Navascues, M. A. Natl Inst Technol Rourkela Dept Math Rourkela 769008 India Indian Inst Technol Madras Dept Math Chennai 600036 Tamil Nadu India Univ Zaragoza Escuela Ingn & Arquitectura Dept Matemat Aplicada Zaragoza 500018 Spain
The fractal interpolation functions with appropriate iterated function systems provide a method to perturb and approximate a continuous function on a compact interval I. This method produces a class of functions f alp... 详细信息
来源: 评论
Image compression using fractal multiwavelet transform
收藏 引用
JOURNAL OF ANALYSIS 2020年 第3期28卷 769-789页
作者: Akhtar, Md Nasim Prasad, M. Guru Prem Kapoor, G. P. Indian Inst Technol Guwahati Dept Math Gauhati 781039 Assam India Indian Inst Technol Kanpur Dept Math & Stat Kanpur Uttar Pradesh India
Multiwavelets occur in wavelet theory for more general multiresolution analysis (MRA) using several scaling functions. The muliwavelets feature orthogonality, short support, symmetry, approximation order and regularit... 详细信息
来源: 评论
Dimensional Analysis of α-fractal functions
收藏 引用
RESULTS IN MATHEMATICS 2021年 第4期76卷 186-186页
作者: Jha, S. Verma, S. NIT Rourkela Dept Math Rourkela 769008 India IIIT Allahabad Dept Appl Sci Allahabad 211015 Uttar Pradesh India
We provide a rigorous study on dimensions of fractal interpolation functions defined on a closed and bounded interval of R which are associated to a continuous function with respect to a base function, scaling functio... 详细信息
来源: 评论
A new class of rational cubic spline fractal interpolation function and its constrained aspects
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2019年 346卷 319-335页
作者: Katiyar, S. K. Chand, A. K. B. Kumar, G. Saravana Indian Inst Technol Madras Dept Math Madras 600036 Tamil Nadu India Indian Inst Technol Madras Dept Engn Design Madras 600036 Tamil Nadu India SRM Inst Sci & Technol Dept Math Madras 603203 Tamil Nadu India
This paper pertains to the area of shape preservation and sets a theoretical foundation for the applications of preserving constrained nature of a given constraining data in fractal interpolation functions (FIFs) tech... 详细信息
来源: 评论
SHAPE PRESERVING RATIONAL QUARTIC fractal functions
收藏 引用
fractalS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2019年 第8期27卷
作者: Katiyar, S. K. Chand, A. K. B. SRM Inst Sci & Technol Dept Math Chennai 603203 Tamil Nadu India Indian Inst Technol Madras Chennai 600036 Tamil Nadu India
The appearance of fractal interpolation function represents a revival of experimental mathematics, raised by computers and intensified by powerful evidence of its applications. This paper is devoted to establish a met... 详细信息
来源: 评论
fractal CONVOLUTION: A NEW OPERATION BETWEEN functions
收藏 引用
FRACTIONAL CALCULUS AND APPLIED ANALYSIS 2019年 第3期22卷 619-643页
作者: Navascues, Maria A. Massopust, Peter R. Univ Zaragoza Dept Matemat Aplicada Calle Maria de Luna 3 Zaragoza 50018 Spain Tech Univ Munich Ctr Math Res Unit M15 Boltzmannstr 3 D-85748 Munich B Germany
In this paper, we define an internal binary operation between functions called fractal convolution that when applied to a pair of mappings generates a fractal function. This is done by means of a suitably defined iter... 详细信息
来源: 评论