咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 29 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 112 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 48 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 18 篇 软件工程
    • 13 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 4 篇 石油与天然气工程
    • 4 篇 交通运输工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 48 篇 理学
    • 43 篇 数学
    • 5 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 31 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 3 篇 经济学
    • 2 篇 应用经济学
    • 1 篇 理论经济学
  • 2 篇 农学
    • 1 篇 作物学

主题

  • 112 篇 frank-wolfe algo...
  • 11 篇 convex optimizat...
  • 7 篇 conditional grad...
  • 6 篇 stochastic optim...
  • 5 篇 traffic assignme...
  • 4 篇 distributed opti...
  • 4 篇 submodular maxim...
  • 4 篇 convex programmi...
  • 4 篇 constrained opti...
  • 4 篇 semidefinite pro...
  • 3 篇 low-rank optimiz...
  • 3 篇 concave penalty ...
  • 3 篇 conditional grad...
  • 3 篇 convex minimizat...
  • 3 篇 mixed integer pr...
  • 3 篇 dynamic regret
  • 3 篇 dimensionality r...
  • 3 篇 online learning
  • 3 篇 matrix completio...
  • 3 篇 quadratic assign...

机构

  • 2 篇 beijing univ tec...
  • 2 篇 shandong normal ...
  • 2 篇 iit kanpur dept ...
  • 2 篇 tech univ berlin...
  • 2 篇 univ new brunswi...
  • 2 篇 moscow inst phys...
  • 2 篇 georgia inst tec...
  • 2 篇 univ penn dept e...
  • 2 篇 beihang univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 henan univ sci &...
  • 1 篇 department of co...
  • 1 篇 yale univ inst n...
  • 1 篇 inria
  • 1 篇 institute of app...
  • 1 篇 natl cheng kung ...
  • 1 篇 school of mathem...
  • 1 篇 mit ctr operat r...
  • 1 篇 princeton univ d...
  • 1 篇 denso corp tokyo...

作者

  • 4 篇 rinaldi f.
  • 3 篇 garber dan
  • 3 篇 migdalas a.
  • 3 篇 xia yong
  • 3 篇 rajawat ketan
  • 3 篇 pokutta sebastia...
  • 3 篇 de santis m.
  • 3 篇 lucidi s.
  • 2 篇 koppel alec
  • 2 篇 zhang mingchuan
  • 2 篇 larsson t.
  • 2 篇 hassani hamed
  • 2 篇 chepuri sundeep ...
  • 2 篇 liu zhi-yong
  • 2 篇 doikov nikita
  • 2 篇 wang yijie
  • 2 篇 qiao hong
  • 2 篇 todd michael j.
  • 2 篇 qian xiaoning
  • 2 篇 wu qingtao

语言

  • 109 篇 英文
  • 3 篇 其他
检索条件"主题词=frank-wolfe algorithm"
112 条 记 录,以下是1-10 订阅
排序:
Linear convergence of a modified frank-wolfe algorithm for computing minimum-volume enclosing ellipsoids
收藏 引用
OPTIMIZATION METHODS & SOFTWARE 2008年 第1期23卷 5-19页
作者: Ahipasaoglu, S. Damla Sun, Peng Todd, Michael J. Cornell Univ Sch Operat Res & Ind Engn Ithaca NY 14853 USA Duke Univ Fuqua Sch Business Durham NC 27706 USA
We show the linear convergence of a simple first-order algorithm for the minimum-volume enclosing ellipsoid problem and its dual, the D-optimal design problem of statistics. Using similar techniques, we show the linea... 详细信息
来源: 评论
The Iterates of the frank-wolfe algorithm May Not Converge
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2024年 第4期49卷 2565-2578页
作者: Bolte, Jerome Combettes, Cyrille W. Pauwelsb, Edouard Univ Toulouse Capitole Toulouse Sch Econ F-31080 Toulouse France Inst Univ France Toulouse Sch Econ Toulouse France
The frank-wolfe algorithm is a popular method for minimizing a smooth convex function f over a compact convex set C. Whereas many convergence results have been derived in terms of function values, almost nothing is kn... 详细信息
来源: 评论
Dynamic Online Learning via frank-wolfe algorithm
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2021年 69卷 932-947页
作者: Kalhan, Deepak S. Singh Bedi, Amrit Koppel, Alec Rajawat, Ketan Hassani, Hamed Gupta, Abhishek K. Banerjee, Adrish IIT Kanpur Dept Elect Engn Kanpur 208016 Uttar Pradesh India US Army Computat & Informat Sci Directorate Res Lab Adelphi MD 20783 USA Univ Penn Dept Elect & Syst Engn Philadelphia PA 19104 USA
Online convex optimization (OCO) encapsulates supervised learning when training sets are large-scale or dynamic, and has grown essential as data has proliferated. OCO decomposes learning into a sequence of sub-problem... 详细信息
来源: 评论
A modified frank-wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms
收藏 引用
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS 2013年 第5期46卷 494-519页
作者: Ahipasaoglu, S. Damla Todd, Michael J. London Sch Econ Dept Management Management Sci Grp London WC2A 2AE England Cornell Univ Ithaca NY 14853 USA
We study a first-order method to find the minimum cross-sectional area ellipsoidal cylinder containing a finite set of points. This problem arises in optimal design in statistics when one is interested in a subset of ... 详细信息
来源: 评论
Escaping the curse of dimensionality in similarity learning: Efficient frank-wolfe algorithm and generalization bounds
收藏 引用
NEUROCOMPUTING 2019年 333卷 185-199页
作者: Liu, Kuan Bellet, Aurelien Google Inc Mountain View CA USA INRIA Villers Les Nancy France
Similarity and metric learning provides a principled approach to construct a task-specific similarity from weakly supervised data. However, these methods are subject to the curse of dimensionality: as the number of fe... 详细信息
来源: 评论
An away-step frank-wolfe algorithm for constrained multiobjective optimization
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2024年 第3期88卷 759-781页
作者: Goncalves, Douglas S. Goncalves, Max L. N. Melo, Jefferson G. Univ Fed Santa Catarina Dept Matemat BR-88040900 Florianopolis SC Brazil Univ Fed Goias IME BR-74001970 Goiania Go Brazil
In this paper, we propose and analyze an away-step frank-wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algori... 详细信息
来源: 评论
Recovery and Convergence Rate of the frank-wolfe algorithm for the m-Exact-Sparse Problem
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2019年 第11期65卷 7407-7414页
作者: Cherfaoui, Farah Emiya, Valentin Ralaivola, Liva Anthoine, Sandrine Aix Marseille Univ Univ Toulon CNRS LIS Marseille France IUF Paris France Criteo Paris France Aix Marseille Univ CNRS Cent Marseille I2M Marseille France
We study the properties of the frank-wolfe algorithm to solve the m-EXACT-SPARSE reconstruction problem, where a signal y must be expressed as a sparse linear combination of a predefined set of atoms, called dictionar... 详细信息
来源: 评论
Projected Forward Gradient-Guided frank-wolfe algorithm via Variance Reduction
收藏 引用
IEEE CONTROL SYSTEMS LETTERS 2024年 8卷 3153-3158页
作者: Rostami, Mohammadreza Kia, Solmaz S. Univ Calif Irvine Dept Mech & Aerosp Engn Irvine CA 92697 USA
This letter aims to enhance the use of the frank-wolfe (FW) algorithm for training deep neural networks. Similar to any gradient-based optimization algorithm, FW suffers from high computational and memory costs when c... 详细信息
来源: 评论
Stochastic block coordinate frank-wolfe algorithm for large-scale biological network alignment
收藏 引用
EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY 2016年 第1期2016卷 1页
作者: Wang, Yijie Qian, Xiaoning Texas A&M Univ Dept Elect & Comp Engn College Stn TX 77843 USA
With increasingly "big" data available in biomedical research, deriving accurate and reproducible biology knowledge from such big data imposes enormous computational challenges. In this paper, motivated by r... 详细信息
来源: 评论
A MODIFIED frank-wolfe algorithm AND ITS CONVERGENCE PROPERTIES
收藏 引用
Acta Mathematicae Applicatae Sinica 1995年 第3期11卷 285-291页
作者: 吴方 吴士泉 Institute of Applied Mathematics the Chinese Academy of Sciences Beijing China
This paper modifies the frank-wolfe's algorithm. Under weaker conditions it proves that the modified algorithm is convergent, and specially under the assumption of convexity of the objective function that without... 详细信息
来源: 评论