咨询与建议

限定检索结果

文献类型

  • 82 篇 期刊文献
  • 29 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 113 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 87 篇 工学
    • 49 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 18 篇 软件工程
    • 14 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 4 篇 石油与天然气工程
    • 4 篇 交通运输工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 49 篇 理学
    • 44 篇 数学
    • 5 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 31 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 3 篇 经济学
    • 2 篇 应用经济学
    • 1 篇 理论经济学
  • 2 篇 农学
    • 1 篇 作物学

主题

  • 113 篇 frank-wolfe algo...
  • 11 篇 convex optimizat...
  • 7 篇 conditional grad...
  • 6 篇 stochastic optim...
  • 5 篇 traffic assignme...
  • 4 篇 distributed opti...
  • 4 篇 submodular maxim...
  • 4 篇 convex programmi...
  • 4 篇 constrained opti...
  • 4 篇 semidefinite pro...
  • 3 篇 low-rank optimiz...
  • 3 篇 concave penalty ...
  • 3 篇 conditional grad...
  • 3 篇 convex minimizat...
  • 3 篇 mixed integer pr...
  • 3 篇 dynamic regret
  • 3 篇 dimensionality r...
  • 3 篇 online learning
  • 3 篇 matrix completio...
  • 3 篇 quadratic assign...

机构

  • 2 篇 beijing univ tec...
  • 2 篇 shandong normal ...
  • 2 篇 iit kanpur dept ...
  • 2 篇 tech univ berlin...
  • 2 篇 univ new brunswi...
  • 2 篇 moscow inst phys...
  • 2 篇 georgia inst tec...
  • 2 篇 univ penn dept e...
  • 2 篇 beihang univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 henan univ sci &...
  • 1 篇 department of co...
  • 1 篇 yale univ inst n...
  • 1 篇 inria
  • 1 篇 institute of app...
  • 1 篇 natl cheng kung ...
  • 1 篇 school of mathem...
  • 1 篇 mit ctr operat r...
  • 1 篇 princeton univ d...
  • 1 篇 denso corp tokyo...

作者

  • 4 篇 rinaldi f.
  • 3 篇 garber dan
  • 3 篇 migdalas a.
  • 3 篇 xia yong
  • 3 篇 rajawat ketan
  • 3 篇 pokutta sebastia...
  • 3 篇 de santis m.
  • 3 篇 lucidi s.
  • 2 篇 koppel alec
  • 2 篇 zhang mingchuan
  • 2 篇 larsson t.
  • 2 篇 hassani hamed
  • 2 篇 chepuri sundeep ...
  • 2 篇 liu zhi-yong
  • 2 篇 doikov nikita
  • 2 篇 wang yijie
  • 2 篇 qiao hong
  • 2 篇 todd michael j.
  • 2 篇 qian xiaoning
  • 2 篇 wu qingtao

语言

  • 109 篇 英文
  • 4 篇 其他
检索条件"主题词=frank-wolfe algorithm"
113 条 记 录,以下是51-60 订阅
排序:
Fast and robust supervised machine learning approach for classification and prediction or Parkinson's disease onset
收藏 引用
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2021年 第6期9卷 690-706页
作者: Bollipo, Lavanya Madhuri Kadambari, K. V. Natl Inst Technol Warangal Dept Comp Sci & Engn Warangal Andhra Pradesh India
Parkinson's disease (PD) is an incurable long-term neurodegenerative disorder that mainly influence the motor system and eventually results in significant morbidity. The use of computational tools for classificati... 详细信息
来源: 评论
Statistical Guarantees and algorithmic Convergence Issues of Variational Boosting  33
Statistical Guarantees and Algorithmic Convergence Issues of...
收藏 引用
IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Guha, Biraj Subhra Bhattacharya, Anirban Pati, Debdeep Univ Rochester Med Ctr Dept Biostat & Computat Biol Rochester NY 14642 USA Texas A&M Univ Dept Stat College Stn TX 77843 USA
We provide statistical guarantees for Bayesian variational boosting by proposing a novel small bandwidth Gaussian mixture variational family. We employ a functional version of frank-wolfe optimization as our variation... 详细信息
来源: 评论
On the rotational invariant L1-norm PCA
收藏 引用
LINEAR ALGEBRA AND ITS APPLICATIONS 2020年 587卷 243-270页
作者: Neumayer, Sebastian Nimmer, Max Setzer, Simon Steidl, Gabriele Tech Univ Kaiserslautern Paul Ehrlich Str 31 D-67663 Kaiserslautern Germany Engineers Gate London England Fraunhofer ITWM Fraunhofer Pl 1 D-67663 Kaiserslautern Germany
Principal component analysis (PCA) is a powerful tool for dimensionality reduction. Unfortunately, it is sensitive to outliers, so that various robust PCA variants were proposed in the literature. One of the most freq... 详细信息
来源: 评论
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-49页
作者: Mokhtari, Aryan Hassani, Hamed Karbasi, Amin Univ Texas Austin Dept Elect & Comp Engn Austin TX 78712 USA Univ Penn Dept Elect & Syst Engn Philadelphia PA 19104 USA Yale Univ Dept Elect Engn & Comp Sci New Haven CT 06520 USA
This paper considers stochastic optimization problems for a large class of objective functions, including convex and continuous submodular. Stochastic proximal gradient methods have been widely used to solve such prob... 详细信息
来源: 评论
Safe Squeezing for Antisparse Coding
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 3252-3265页
作者: Elvira, Clement Herzet, Cedric Univ Rennes INRIA CNRS IRISA F-35000 Rennes France
Spreading the information over all coefficients of a representation is a desirable property in many applications such as digital communication or machine learning. This so-called antisparse representation can be obtai... 详细信息
来源: 评论
Robust linear model for multi-period AC optimal power flow
收藏 引用
IET GENERATION TRANSMISSION & DISTRIBUTION 2020年 第13期14卷 2535-2548页
作者: Heidarabadi, Houman Pourahmadi, Farzaneh Hossieni, Seyed Hamid Sharif Univ Technol Dept Elect Engn Ctr Excellence Power Syst Control & Management Tehran Iran
In the near future power systems, efficient management of uncertainties with considering the system constraints without any simplification will be a challenge for system operators. Considering AC constraints leads to ... 详细信息
来源: 评论
Dynamic Scheduling for IoT Analytics at the Edge
Dynamic Scheduling for IoT Analytics at the Edge
收藏 引用
21st IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM)
作者: Galanopoulos, Apostolos Valls, Victor Leith, Douglas J. Iosifidis, George Trinity Coll Dublin Sch Comp Sci & Stat Dublin Ireland Yale Univ Dept Elect Engn New Haven CT 06520 USA Yale Univ Inst Network Sci New Haven CT 06520 USA
We propose an online policy that schedules the transmission and processing of data analytic tasks in an Internet of Things (IoT) network. The tasks are executed with different precision at the (possibly heterogeneous)... 详细信息
来源: 评论
Projection-free decentralized online learning for submodular maximization over time-varying networks
收藏 引用
The Journal of Machine Learning Research 2021年 第1期22卷 2328-2369页
作者: Junlong Zhu Qingtao Wu Mingchuan Zhang Ruijuan Zheng Keqin Li School of Information Engineering Henan University of Science and Technology Luoyang China Department of Computer Science State University of New York New Paltz NY
This paper considers a decentralized online submodular maximization problem over time-varying networks, where each agent only utilizes its own information and the received information from its neighbors. To address th... 详细信息
来源: 评论
PROJECTION FREE DYNAMIC ONLINE LEARNING
PROJECTION FREE DYNAMIC ONLINE LEARNING
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Kalhan, Deepak S. Bedi, Amrit S. Koppel, Alec Rajawat, Ketan Gupta, Abhishek Banerjee, Adrish IIT Kanpur Dept Elect Engn Kanpur Uttar Pradesh India US Army Res Lab CISD Adelphi MD USA
Projection based algorithms are popular in the literature for online convex optimization with convex constraints and the projection step results in a bottleneck for the practical implementation of the algorithms. To a... 详细信息
来源: 评论
A distributed frank-wolfe framework for learning low-rank matrices with the trace norm
收藏 引用
MACHINE LEARNING 2018年 第8-10期107卷 1457-1475页
作者: Zheng, Wenjie Bellet, Aarelien Gallinari, Patrick UPMC Univ Paris 06 Sorbonne Univ UMR 7606 LIP6 Paris France INRIA Paris France
We consider the problem of learning a high-dimensional but low-rank matrix from a large-scale dataset distributed over several machines, where low-rankness is enforced by a convex trace norm constraint. We propose DFW... 详细信息
来源: 评论