咨询与建议

限定检索结果

文献类型

  • 218 篇 期刊文献
  • 211 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 431 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 393 篇 工学
    • 311 篇 计算机科学与技术...
    • 109 篇 电气工程
    • 85 篇 控制科学与工程
    • 61 篇 软件工程
    • 44 篇 信息与通信工程
    • 22 篇 材料科学与工程(可...
    • 13 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 7 篇 力学(可授工学、理...
    • 5 篇 石油与天然气工程
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
  • 70 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 66 篇 理学
    • 32 篇 数学
    • 18 篇 生物学
    • 10 篇 物理学
    • 9 篇 化学
    • 6 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 9 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 特种医学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 教育学
    • 4 篇 教育学
  • 4 篇 农学
  • 1 篇 法学
  • 1 篇 艺术学

主题

  • 431 篇 function optimiz...
  • 41 篇 particle swarm o...
  • 34 篇 genetic algorith...
  • 23 篇 evolutionary alg...
  • 23 篇 differential evo...
  • 21 篇 genetic algorith...
  • 21 篇 swarm intelligen...
  • 14 篇 evolutionary com...
  • 12 篇 optimization
  • 11 篇 convergence
  • 11 篇 evolutionary alg...
  • 10 篇 particle swarm o...
  • 9 篇 gravitational se...
  • 9 篇 feature selectio...
  • 8 篇 engineering opti...
  • 7 篇 flower pollinati...
  • 7 篇 global optimizat...
  • 7 篇 grey wolf optimi...
  • 6 篇 artificial bee c...
  • 6 篇 sociology

机构

  • 17 篇 univ sci & techn...
  • 4 篇 univ sci & techn...
  • 4 篇 univ toyama fac ...
  • 4 篇 changsha univ sc...
  • 4 篇 guizhou univ fin...
  • 3 篇 univ craiova fac...
  • 3 篇 walchand coll en...
  • 3 篇 bankura unnayani...
  • 3 篇 xihua univ sch e...
  • 3 篇 china univ geosc...
  • 3 篇 gansu normal uni...
  • 3 篇 xian univ archit...
  • 3 篇 guangxi univ nat...
  • 2 篇 wulanchabu vocat...
  • 2 篇 tianjin univ com...
  • 2 篇 jinggangshan uni...
  • 2 篇 national financi...
  • 2 篇 shaanxi normal u...
  • 2 篇 pingdingshan uni...
  • 2 篇 wenzhou univ dep...

作者

  • 16 篇 wang jie-sheng
  • 7 篇 zhou yongquan
  • 6 篇 luo qifang
  • 5 篇 chen huiling
  • 5 篇 wang j. s.
  • 4 篇 si tapas
  • 4 篇 long wen
  • 4 篇 umbarkar a. j.
  • 4 篇 xie w.
  • 4 篇 xu ming
  • 4 篇 tang mingzhu
  • 4 篇 gao shangce
  • 4 篇 wang jun
  • 3 篇 wang lei
  • 3 篇 zhao hongxia
  • 3 篇 yuan xin
  • 3 篇 cai shaohong
  • 3 篇 xing cheng
  • 3 篇 chen zhi-qiang
  • 3 篇 pytel krzysztof

语言

  • 402 篇 英文
  • 15 篇 中文
  • 14 篇 其他
检索条件"主题词=function optimization"
431 条 记 录,以下是1-10 订阅
排序:
function optimization using an adaptive crossover operator based on locality
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 1997年 第6期10卷 519-524页
作者: Ko, MS Kang, TW Hwang, CS Korea Univ Dept Comp Sci & Engn Seoul 136701 South Korea
This paper proposes a new crossover operator in genetic algorithms for function optimization. The proposed Adaptive Crossover Operator (ACO) restricts the crossover range by using a bias value. The bias_value is compu... 详细信息
来源: 评论
function optimization algorithm based on SIRQV epidemic dynamic model
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2015年 8卷 62-92页
作者: Huang, Guang-qiu Xian Univ Architecture & Technol Sch Management Xian 710055 Peoples R China
To solve some complicated function optimization problems, the SIRQV algorithm is constructed based on the SIRQV epidemic model. The algorithm supposes that some animal individuals exist in an ecosystem;each individual... 详细信息
来源: 评论
function optimization by using genetic algorithms with individuals having different birth and survival rates
收藏 引用
ENGINEERING optimization 2001年 第6期33卷 749-777页
作者: Mak, KL Wong, YS Univ Hong Kong Dept Ind & Mfg Syst Engn Hong Kong Hong Kong Peoples R China
This paper proposes an effective approach to function optimisation using the concept of genetic algorithms. The proposed approach differs from the canonical genetic algorithm in that the populations of candidate solut... 详细信息
来源: 评论
function optimization via a Continuous Action-Set Reinforcement Learning Automata Model  4th
Function Optimization via a Continuous Action-Set Reinforcem...
收藏 引用
4th International Conference on Communications, Signal Processing, and Systems (CSPS)
作者: Guo, Ying Ge, Hao Wang, Fanming Huang, Yuyang Li, Shenghong Shanghai Jiao Tong Univ Dept Elect Engn Shanghai Peoples R China Riffle Inst Singapore Singapore Shanghai Starriver Bilingual Sch Shanghai Peoples R China
Learning automata as a tool for machine learning, could search the optimal state adaptively in random environment. function optimization is a fundamental issue and many practical models are ultimately the mathematical... 详细信息
来源: 评论
function optimization Using Robust Simulated Annealing  3rd
Function Optimization Using Robust Simulated Annealing
收藏 引用
3rd International Conference on Information System Design and Intelligent Applications (INDIA)
作者: Pandey, Hari Mohan Gajendran, Ahalya Amity Univ Dept Comp Sci & Engn Sect 125 Noida Uttar Pradesh India
In today's world, researchers spend more time in fine-tuning of algorithms rather than designing and implementing them. This is very true when developing heuristics and metaheuristics, where the correct choice of ... 详细信息
来源: 评论
Entanglement-Enhanced Quantum-Inspired Tabu Search Algorithm for function optimization
收藏 引用
IEEE ACCESS 2017年 5卷 13236-13252页
作者: Kuo, Shu-Yu Chou, Yao-Hsin Natl Chi Nan Univ Puli 54561 Taiwan Natl Chi Nan Univ Dept Comp Sci & Informat Engn Puli 54561 Taiwan
Many metaheuristic algorithms have been proposed to solve combinatorial and numerical optimization problems. Most optimization problems have high dependence, meaning that variables are strongly dependent on one anothe... 详细信息
来源: 评论
An RNA evolutionary algorithm based on gradient descent for function optimization
收藏 引用
JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING 2024年 第4期11卷 332-357页
作者: Wu, Qiuxuan Zhao, Zikai Chen, Mingming Chi, Xiaoni Zhang, Botao Wang, Jian Zhilenkov, Anton A. Chepinskiy, Sergey A. Hangzhou Dianzi Univ Int Joint Res Lab Autonomous Robot Syst Hangzhou 310018 Peoples R China Hangzhou Dianzi Univ HDU ITMO Joint Inst Hangzhou 310018 Peoples R China St Petersburg State Marine Tech Univ Inst Hydrodynam & Control Proc St Petersburg 190121 Russia Hangzhou Vocat & Tech Sch Jeely Automative Inst Hangzhou 310018 Peoples R China ITMO Univ Fac Control Syst & Robot St Petersburg 197101 Russia
The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control systems, data fitting, and engineering designs. Although ... 详细信息
来源: 评论
Particle Swarm Optimizer with Aging Operator for Multimodal function optimization
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS 2013年 第5期6卷 862-880页
作者: BoJiang Wang, Ning Li, Xiaodong Zhejiang Univ Natl Lab Ind Control Hangzhou 310027 Zhejiang Peoples R China RMIT Univ Sch Comp Sci & Informat Technol Melbourne Vic 3001 Australia
This paper proposes a new scheme for preventing a Particle Swarm Optimizer from premature convergence on multimodal optimization problems. Instead of only using fitness evaluation, we use a new index called particle a... 详细信息
来源: 评论
Artificial infectious disease optimization: A SEIQR epidemic dynamic model-based function optimization algorithm
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2016年 27卷 31-67页
作者: Huang, Guangqiu Xian Univ Architecture & Technol Sch Management Xian 710055 Peoples R China
To solve some complicated function optimization problems, an artificial infectious disease optimization algorithm based on the SEIQR epidemic model is constructed, it is called as the SEIQR algorithm, or SEIQRA in sho... 详细信息
来源: 评论
An Improved Grey Wolf Optimizer Based on Tracking and Seeking Modes to Solve function optimization Problems
收藏 引用
IEEE ACCESS 2020年 8卷 69861-69893页
作者: Guo, M. W. Wang, J. S. Zhu, L. F. Guo, S. S. Xie, W. Univ Sci & Technol Liaoning Sch Elect & Informat Engn Anshan 114051 Peoples R China
Grey wolf optimizer (GWO) is a new meta-heuristic algorithm. The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Three main stages of hunting include: encircling, tracking... 详细信息
来源: 评论