咨询与建议

限定检索结果

文献类型

  • 218 篇 期刊文献
  • 211 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 431 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 393 篇 工学
    • 311 篇 计算机科学与技术...
    • 109 篇 电气工程
    • 85 篇 控制科学与工程
    • 61 篇 软件工程
    • 44 篇 信息与通信工程
    • 22 篇 材料科学与工程(可...
    • 13 篇 机械工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 7 篇 力学(可授工学、理...
    • 5 篇 石油与天然气工程
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 动力工程及工程热...
    • 2 篇 交通运输工程
  • 70 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 66 篇 理学
    • 32 篇 数学
    • 18 篇 生物学
    • 10 篇 物理学
    • 9 篇 化学
    • 6 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 9 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 特种医学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 教育学
    • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 法学
    • 3 篇 法学
  • 1 篇 艺术学

主题

  • 431 篇 function optimiz...
  • 41 篇 particle swarm o...
  • 34 篇 genetic algorith...
  • 23 篇 evolutionary alg...
  • 23 篇 differential evo...
  • 21 篇 genetic algorith...
  • 21 篇 swarm intelligen...
  • 14 篇 evolutionary com...
  • 12 篇 optimization
  • 11 篇 convergence
  • 11 篇 evolutionary alg...
  • 10 篇 particle swarm o...
  • 9 篇 gravitational se...
  • 9 篇 feature selectio...
  • 8 篇 engineering opti...
  • 7 篇 flower pollinati...
  • 7 篇 global optimizat...
  • 7 篇 grey wolf optimi...
  • 6 篇 artificial bee c...
  • 6 篇 sociology

机构

  • 17 篇 univ sci & techn...
  • 4 篇 univ sci & techn...
  • 4 篇 univ toyama fac ...
  • 4 篇 changsha univ sc...
  • 4 篇 guizhou univ fin...
  • 3 篇 univ craiova fac...
  • 3 篇 walchand coll en...
  • 3 篇 bankura unnayani...
  • 3 篇 xihua univ sch e...
  • 3 篇 china univ geosc...
  • 3 篇 gansu normal uni...
  • 3 篇 xian univ archit...
  • 3 篇 guangxi univ nat...
  • 2 篇 wulanchabu vocat...
  • 2 篇 tianjin univ com...
  • 2 篇 jinggangshan uni...
  • 2 篇 national financi...
  • 2 篇 shaanxi normal u...
  • 2 篇 pingdingshan uni...
  • 2 篇 wenzhou univ dep...

作者

  • 16 篇 wang jie-sheng
  • 7 篇 zhou yongquan
  • 6 篇 luo qifang
  • 5 篇 chen huiling
  • 5 篇 wang j. s.
  • 4 篇 si tapas
  • 4 篇 long wen
  • 4 篇 umbarkar a. j.
  • 4 篇 xie w.
  • 4 篇 xu ming
  • 4 篇 tang mingzhu
  • 4 篇 gao shangce
  • 4 篇 wang jun
  • 3 篇 wang lei
  • 3 篇 zhao hongxia
  • 3 篇 yuan xin
  • 3 篇 cai shaohong
  • 3 篇 xing cheng
  • 3 篇 chen zhi-qiang
  • 3 篇 pytel krzysztof

语言

  • 402 篇 英文
  • 15 篇 中文
  • 14 篇 其他
检索条件"主题词=function optimization"
431 条 记 录,以下是31-40 订阅
排序:
LGWO: An Improved Grey Wolf optimization for function optimization  8th
LGWO: An Improved Grey Wolf Optimization for Function Optimi...
收藏 引用
8th International Conference on Swarm Intelligence (ICSI)
作者: Luo, Jie Chen, Huiling Wang, Kejie Tong, Changfei Li, Jun Cai, Zhennao Wenzhou Univ Coll Phys & Elect Informat Wenzhou Peoples R China
Grey wolf optimization (GWO) algorithm is a novel nature-inspired heuristic paradigm. GWO was inspired by grey wolves, which mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. It has exhib... 详细信息
来源: 评论
Competitive co-evolutionary algorithms can solve function optimization problems
收藏 引用
ARTIFICIAL LIFE AND ROBOTICS 2009年 第3期14卷 440-443页
作者: Sato, Tatsuya Arita, Takaya Nagoya Univ Grad Sch Informat Sci Chikusa Ku Furo Cho Nagoya Aichi 4648601 Japan
Competitive co-evolutionary algorithms (CCEAs) have many advantages, but their range of applications has been crucially limited. This study provides a simple, nonproblem-specific framework to extend that range. The fr... 详细信息
来源: 评论
A high-efficiency hybrid evolutionary algorithm for solving function optimization problem
收藏 引用
11th Joint International Computer Conference (JICC 2005)
作者: Dai, GM Zhan, W China Univ Geosci Sch Comp Wuhan 430074 Peoples R China
Based on the GUO's Algorithm a high-efficiently hybrid evolutionary algorithm is proposed. The new algorithm has two main characteristics: first, introduce the Gauss mutation operator of Evolution Strategies (ES);... 详细信息
来源: 评论
The LEM3 implementation of learnable evolution model and its testing on complex function optimization problems  06
The LEM3 implementation of learnable evolution model and its...
收藏 引用
8th Annual Genetic and Evolutionary Computation Conference
作者: Wojtusiak, Janusz Michalski, Ryszard S. George Mason Univ Fairfax VA 22030 USA
Learnable Evolution Model (LEM) is a form of non-Darwinian evolutionary computation that employs machine learning to guide evolutionary processes. Its main novelty are new type of operators for creating new individual... 详细信息
来源: 评论
Whale Swarm Algorithm for function optimization  1
收藏 引用
13th International Conference on Intelligent Computing (ICIC)
作者: Zeng, Bing Gao, Liang Li, Xinyu Huazhong Univ Sci & Technol Wuhan Hubei Peoples R China
Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper proposes a... 详细信息
来源: 评论
An Improved Lightning Attachment Procedure optimization Algorithm for function optimization  10
An Improved Lightning Attachment Procedure Optimization Algo...
收藏 引用
10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems - Technology and Applications (IDAACS)
作者: Sun, Shuang Ye, Zhiwei Sun, Yiheng Zhan, Sikai Yu, Han Yao, Quanfeng Hubei Univ Technol Sch Comp Sci Wuhan 430068 Peoples R China Wuhan Fiberhome Tech Serv Co LTD Wuhan Peoples R China
The hybridization of different meta-heuristic algorithms is for expanding the synergies of a single optimization method used alone and achieving a better optimum search performance. In this work, we proposed a hybrid ... 详细信息
来源: 评论
Dynamic Clonal and Chaos-Mutation Evolutionary Algorithm for function optimization
收藏 引用
3rd International Conference on Intelligence Computation and Applications
作者: Yang, Ming Guan, Jing China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Inst Pattern Recognit & Artificial Wuhan 430074 Peoples R China
This paper introduced a dynamic-clone and chaos-mutation evolutionary algorithm (DCCM-EA), which employs dynamic clone and chaos Mutation methods, for function optimization. The number of clone is direct proportion to... 详细信息
来源: 评论
A hybrid Particle Swarm optimization algorithm for function optimization
收藏 引用
EvoWorkshops 2008
作者: Sevkli, Zulal Sevilgen, F. Erdogan Fatih Univ Dept Comp Engn Buyukcekmece Istanbul Turkey Gebze Inst Technol Dept Comp Engn Gebze Turkey
In this paper, a new variation of Particle Swarm optimization (PSO) based on hybridization with Reduced Variable Neighborhood Search (RVNS) is proposed. In our method, general flow of PSO is preserved. However, to rec... 详细信息
来源: 评论
A Novel Variable-Boundary-Coded Quantum Genetic Algorithm for function optimization
A Novel Variable-Boundary-Coded Quantum Genetic Algorithm fo...
收藏 引用
8th IEEE International Conference on Dependable, Autonomic and Secure Computing
作者: Xiong, Hegen Tang, Qiuhua Xiong, Kai Wuhan Univ Sci & Technol Coll Mech Automat Engn Wuhan Peoples R China Univ Elect Sci & Technol China Sch Automat Engn Chengdu Peoples R China
Quantum genetic algorithm is a recently proposed new optimization algorithm combining quantum algorithm with genetic algorithm. It characterizes good population diversity, rapid convergence and good global search capa... 详细信息
来源: 评论
Promising search regions of crossover operators for function optimization
收藏 引用
20th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems
作者: Someya, Hiroshi Inst Stat Math Minato Ku Tokyo 106 Japan
Performance of a genetic algorithm for function optimization, often appeared in real-world applications, depends on its crossover operator strongly. Existing crossover operators are designed for intensive search in ce... 详细信息
来源: 评论