咨询与建议

限定检索结果

文献类型

  • 150 篇 期刊文献
  • 106 篇 会议

馆藏范围

  • 256 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 164 篇 计算机科学与技术...
    • 72 篇 电气工程
    • 24 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 18 篇 软件工程
    • 12 篇 机械工程
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 9 篇 材料科学与工程(可...
    • 8 篇 电子科学与技术(可...
    • 6 篇 水利工程
    • 5 篇 土木工程
    • 5 篇 测绘科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 力学(可授工学、理...
    • 4 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 3 篇 石油与天然气工程
    • 3 篇 纺织科学与工程
  • 48 篇 理学
    • 17 篇 数学
    • 11 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 7 篇 化学
    • 7 篇 地球物理学
    • 6 篇 物理学
    • 6 篇 地理学
  • 36 篇 管理学
    • 32 篇 管理科学与工程(可...
  • 23 篇 医学
    • 14 篇 临床医学
    • 9 篇 基础医学(可授医学...
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 法学
  • 1 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 256 篇 fuzzy c-means al...
  • 30 篇 image segmentati...
  • 20 篇 clustering
  • 17 篇 fuzzy clustering
  • 11 篇 cluster analysis
  • 10 篇 k-means algorith...
  • 9 篇 magnetic resonan...
  • 7 篇 pattern recognit...
  • 7 篇 particle swarm o...
  • 7 篇 genetic algorith...
  • 6 篇 support vector m...
  • 6 篇 data mining
  • 6 篇 genetic algorith...
  • 5 篇 mahalanobis dist...
  • 5 篇 clustering algor...
  • 5 篇 wireless sensor ...
  • 5 篇 feature extracti...
  • 4 篇 cluster validity
  • 4 篇 competitive clus...
  • 4 篇 optimization

机构

  • 4 篇 budapest univ te...
  • 4 篇 sapientia hungar...
  • 3 篇 budapest univ te...
  • 3 篇 king fahd univ p...
  • 3 篇 univ ulsan sch c...
  • 3 篇 yantai univ sch ...
  • 2 篇 univ ulsan sch e...
  • 2 篇 indian inst tech...
  • 2 篇 univ elect sci &...
  • 2 篇 asia univ dept c...
  • 2 篇 shandong univ fi...
  • 2 篇 indian stat inst...
  • 2 篇 concordia univ d...
  • 2 篇 univ waterloo de...
  • 2 篇 northeast elect ...
  • 2 篇 sapientia univ t...
  • 2 篇 univ waterloo de...
  • 2 篇 beijing normal u...
  • 2 篇 hubei minzu univ...
  • 2 篇 yonsei univ dept...

作者

  • 11 篇 szilagyi laszlo
  • 6 篇 szilagyi sandor ...
  • 5 篇 selim sz
  • 5 篇 benyo zoltan
  • 4 篇 boukadoum mounir
  • 4 篇 kim jong-myon
  • 4 篇 lazli lilia
  • 4 篇 kamel ms
  • 3 篇 feng guozheng
  • 3 篇 yih jeng-ming
  • 3 篇 benyo balazs
  • 3 篇 xu zeshui
  • 3 篇 xu jindong
  • 2 篇 li xiaowen
  • 2 篇 hong sl
  • 2 篇 ait-mohamed otma...
  • 2 篇 ou shifeng
  • 2 篇 lin wen-chih
  • 2 篇 chen jianping
  • 2 篇 dobo-nagy csaba

语言

  • 250 篇 英文
  • 5 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=fuzzy C-means algorithm"
256 条 记 录,以下是231-240 订阅
排序:
Identification of the Dental Root canal from Micro-cT Records Using 3D curve Skeleton Extraction
收藏 引用
IFAc Proceedings Volumes 2011年 第1期44卷 6184-6189页
作者: Balázs Benyó László Szilágyi csaba Dobó-Nagy Department of Control Engineering and Information Technology Budapest University of Technology and Economics (Tel: +36-1-463-4027) Independent Section of Radiology Semmelweis University of Budapest Hungary
Abstract This paper presents a novel image processing procedure dedicated to the automated detection of the medial axis of the root canal from dental micro cT records. The 3D model of root canal is built up from sever... 详细信息
来源: 评论
covariance matrix approach to feature-weight selection in FcM with application to color image segmentation
收藏 引用
智慧科技与应用统计学报 2017年 第2期15卷 13-30页
作者: 蔡政霖
fuzzy c-means (FcM) algorithm is a general method for clustering analysis. When there exitsts noise variables in the data, the error rate of the FcM algorithm relatively increases. Thus, how to choose the weight of th... 详细信息
来源: 评论
A Soft-Hard combination Decision Fusion Scheme for a clustered Distributed Detection System with Multiple Sensors
收藏 引用
SENSORS 2018年 第12期18卷 4370-4370页
作者: Luo, Junhai He, Xiaoting Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Sichuan Peoples R China
In the distributed detection system with multiple sensors, there are two ways for local sensors to deliver their local decisions to the fusion center (Fc): a one-bit hard decision and a multiple-bit soft decision. com... 详细信息
来源: 评论
Traffic coordination by reducing jamming attackers in VANET using probabilistic Manhattan Grid Topology for automobile applications
收藏 引用
ScIENTIFIc REPORTS 2024年 第1期14卷 1-16页
作者: Santhi, G. B. Jacob, Suma Sira Sheela, D. Kumaran, P. New Prince Shri Bhavani Coll Engn & Technol Dept Comp Sci & Engn Chennai India Sri Krishna Coll Technol Dept Artificial Intelligence & Data Sci Coimbatore India Saveetha Inst Med & Tech Sci Saveetha Sch Engn Dept Elect & Commun Engn Chennai India Wolaita Sodo Univ Coll Engn Dept Mech Engn Wolaita Sodo Ethiopia
In recent years Intelligent Transportation System (ITS) has been growing interest in the development of vehicular communication technology. The traffic in India shows considerable fluctuations owing to the static and ... 详细信息
来源: 评论
Methods of Resource Scheduling Based on Optimized fuzzy clustering in Fog computing
收藏 引用
SENSORS 2019年 第9期19卷 2122.-2122.页
作者: Li, Guangshun Liu, Yuncui Wu, Junhua Lin, Dandan Zhao, Shuaishuai Qufu Normal Univ Sch Informat Sci & Engn Rizhao 276800 Peoples R China
cloud computing technology is widely used at present. However, cloud computing servers are far from terminal users, which may lead to high service request delays and low user satisfaction. As a new computing architect... 详细信息
来源: 评论
A Self-Adaptive FcM for the Optimal fuzzy Weighting Exponent
收藏 引用
INTERNATIONAL JOURNAL OF cOMPUTATIONAL INTELLIGENcE AND APPLIcATIONS 2019年 第2期18卷
作者: Ren, Min Wang, Zhihao Jiang, Jirong Shandong Univ Finance & Econ Sch Math & Quantitat Econ Jinan Shandong Peoples R China Shandong Univ Finance & Econ Sch Management & Engn Jinan Shandong Peoples R China
fuzzy weighting exponent m is an important parameter of fuzzy c-means (FcM), closely related to the performance of the algorithm. First, an improved fuzzy correlation degree was put forward to measure the relevance be... 详细信息
来源: 评论
AF-DHNN: fuzzy clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection
收藏 引用
SENSORS 2015年 第7期15卷 17366-17396页
作者: Jin, Shan cui, Wen Jin, Zhigang Wang, Ying Tianjin Univ Sch Elect Informat Engn Tianjin 300072 Peoples R China Fire Brigade Hexi Dist Tianjin 300222 Peoples R China Tianjin Polytech Univ Sch Management Tianjin 300387 Peoples R China Nankai Hosp Tradit Chinese Med Tianjin 300102 Peoples R China Guangxi Expt Ctr Informat Sci Guilin 541004 Peoples R China
Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, in... 详细信息
来源: 评论
An Evolutionary clustering algorithm Based on Adaptive fuzzy Weighted Sum Validity Function
An Evolutionary Clustering Algorithm Based on Adaptive Fuzzy...
收藏 引用
The Third International Joint conference on computational Science and Optimization(第三届计算科学与优化国际大会 cSO 2010)
作者: Hongbin Dong Wei Hou Guisheng Yin School of Computer Science and Technology Harbin Engineering University Harbin 150001 China
In this paper, we propose a novel objective function called the adaptive fuzzy Weighted Sum Validity Function (FWSVF), which is a merged weight of the several fuzzy cluster validity functions, including XB, PE, Pc... 详细信息
来源: 评论
The fuzzy clustering combined an improved artificial bee colony algorithm with new rank fitness selection
The fuzzy clustering combined an improved artificial bee col...
收藏 引用
International conference on Software Intelligence Technologies and Applications & International conference on Frontiers of Internet of Things 2014
作者: He Yunbin Xiao Yupeng Wan Jing Li Song School of Computer Science and Technology Harbin University of Science and Technology China
The traditional fuzzy c-means clustering algorithm is easy to trap in local optimums as its sensitive selection of the initial cluster centers. For overcoming this disadvantage, this paper presents a fuzzy c-means alg... 详细信息
来源: 评论
A new feature-weighted relative entropy clustering algorithm  23
A new feature-weighted relative entropy clustering algorithm
收藏 引用
Proceedings of the 2023 6th International conference on Artificial Intelligence and Pattern Recognition
作者: Yifan Hu Jing Li Bin Jia School of Communication and Information Engineering Xi 'an University of Posts and Telecommunications China
The fuzzy c-means (FcM) algorithm is one of the most widely used algorithms in unsupervised pattern recognition learning. However, real-world data is more complex and there may be some irrelevant features in the data ... 详细信息
来源: 评论