咨询与建议

限定检索结果

文献类型

  • 150 篇 期刊文献
  • 106 篇 会议

馆藏范围

  • 256 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 164 篇 计算机科学与技术...
    • 72 篇 电气工程
    • 24 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 18 篇 软件工程
    • 12 篇 机械工程
    • 12 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 9 篇 材料科学与工程(可...
    • 8 篇 电子科学与技术(可...
    • 6 篇 水利工程
    • 5 篇 土木工程
    • 5 篇 测绘科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 力学(可授工学、理...
    • 4 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 3 篇 石油与天然气工程
    • 3 篇 纺织科学与工程
  • 48 篇 理学
    • 17 篇 数学
    • 11 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 7 篇 化学
    • 7 篇 地球物理学
    • 6 篇 物理学
    • 6 篇 地理学
  • 36 篇 管理学
    • 32 篇 管理科学与工程(可...
  • 23 篇 医学
    • 14 篇 临床医学
    • 9 篇 基础医学(可授医学...
  • 4 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 法学
  • 1 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 256 篇 fuzzy c-means al...
  • 30 篇 image segmentati...
  • 20 篇 clustering
  • 17 篇 fuzzy clustering
  • 11 篇 cluster analysis
  • 10 篇 k-means algorith...
  • 9 篇 magnetic resonan...
  • 7 篇 pattern recognit...
  • 7 篇 particle swarm o...
  • 7 篇 genetic algorith...
  • 6 篇 support vector m...
  • 6 篇 data mining
  • 6 篇 genetic algorith...
  • 5 篇 mahalanobis dist...
  • 5 篇 clustering algor...
  • 5 篇 wireless sensor ...
  • 5 篇 feature extracti...
  • 4 篇 cluster validity
  • 4 篇 competitive clus...
  • 4 篇 optimization

机构

  • 4 篇 budapest univ te...
  • 4 篇 sapientia hungar...
  • 3 篇 budapest univ te...
  • 3 篇 king fahd univ p...
  • 3 篇 univ ulsan sch c...
  • 3 篇 yantai univ sch ...
  • 2 篇 univ ulsan sch e...
  • 2 篇 indian inst tech...
  • 2 篇 univ elect sci &...
  • 2 篇 asia univ dept c...
  • 2 篇 shandong univ fi...
  • 2 篇 indian stat inst...
  • 2 篇 concordia univ d...
  • 2 篇 univ waterloo de...
  • 2 篇 northeast elect ...
  • 2 篇 sapientia univ t...
  • 2 篇 univ waterloo de...
  • 2 篇 beijing normal u...
  • 2 篇 hubei minzu univ...
  • 2 篇 yonsei univ dept...

作者

  • 11 篇 szilagyi laszlo
  • 6 篇 szilagyi sandor ...
  • 5 篇 selim sz
  • 5 篇 benyo zoltan
  • 4 篇 boukadoum mounir
  • 4 篇 kim jong-myon
  • 4 篇 lazli lilia
  • 4 篇 kamel ms
  • 3 篇 feng guozheng
  • 3 篇 yih jeng-ming
  • 3 篇 benyo balazs
  • 3 篇 xu zeshui
  • 3 篇 xu jindong
  • 2 篇 li xiaowen
  • 2 篇 hong sl
  • 2 篇 ait-mohamed otma...
  • 2 篇 ou shifeng
  • 2 篇 lin wen-chih
  • 2 篇 chen jianping
  • 2 篇 dobo-nagy csaba

语言

  • 250 篇 英文
  • 5 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=fuzzy c-means algorithm"
256 条 记 录,以下是21-30 订阅
排序:
Generalized rough fuzzy c-means algorithm for brain MR image segmentation
收藏 引用
cOMPUTER METHODS AND PROGRAMS IN BIOMEDIcINE 2012年 第2期108卷 644-655页
作者: Ji, Zexuan Sun, Quansen Xia, Yong chen, Qiang Xia, Deshen Feng, Dagan Nanjing Univ Sci & Technol Sch Comp Sci & Technol Nanjing 210094 Jiangsu Peoples R China Univ Sydney Biomed & Multimedia Informat Technol BMIT Res Grp Sch Informat Technol Sydney NSW 2006 Australia Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Hong Kong Polytech Univ CMSP Dept Elect & Informat Engn Hong Kong Hong Kong Peoples R China Shanghai Jiao Tong Univ Med X Res Inst Shanghai 200025 Peoples R China
fuzzy sets and rough sets have been widely used in many clustering algorithms for medical image segmentation, and have recently been combined together to better deal with the uncertainty implied in observed image data... 详细信息
来源: 评论
A new segmentation method of cerebral MRI images based on the fuzzy c-means algorithm
收藏 引用
TURKISH JOURNAL OF ELEcTRIcAL ENGINEERING AND cOMPUTER ScIENcES 2017年 第4期25卷 3215-3226页
作者: Abderrezak, Mohamed Zaki chibane, Mouatez Billah Mansour, Karim Freres Mentouri Univ Dept Elect Engn Lab Study Elect Mat Med Applicat Constantine Algeria
The aim of this work is to present a new method for cerebral MRI image segmentation based on modification of the fuzzy c-means (FcM) algorithm. We used local and nonlocal information distance in the initial function o... 详细信息
来源: 评论
Remote sensing image classification based on semi-supervised adaptive interval type-2 fuzzy c-means algorithm
收藏 引用
cOMPUTERS & GEOScIENcES 2019年 131卷 132-143页
作者: Xu, Jindong Feng, Guozheng Zhao, Tianyu Sun, Xiao Zhu, Meng YanTai Univ Sch Comp & Control Engn Yantai 264005 Peoples R China
Because of the uncertainty in remote sensing images and the ill-posedness of the problem, it is difficult for traditional unsupervised classification algorithms to create an accurate classification model. In contrast,... 详细信息
来源: 评论
Hesitant fuzzy c-means algorithm and its application in image segmentation
收藏 引用
JOURNAL OF INTELLIGENT & fuzzy SYSTEMS 2020年 第3期39卷 3681-3695页
作者: Zeng, Wenyi Ma, Rong Yin, Qian Zheng, Xin Xu, Zeshui Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China Sichuan Univ Chengdu Business Sch Chengdu Peoples R China
Image segmentation plays an important role in many fields such as computer vision, pattern recognition, machine learning and so on. In recent years, many variants of standard fuzzy c-means (FcM) algorithm have been pr... 详细信息
来源: 评论
The range of the value for the fuzzifier of the fuzzy c-means algorithm
收藏 引用
PATTERN REcOGNITION LETTERS 2012年 第16期33卷 2280-2284页
作者: Huang, Ming Xia, Zhixun Wang, Hongbo Zeng, Qinghua Wang, Qian Natl Univ Def Technol Sci & Technol Scramjet Lab Changsha 410073 Hunan Peoples R China Xian Satellite Control Ctr Xian 710043 Peoples R China NW Inst Nucl Technol Xian 710024 Peoples R China
The fuzzy c-means algorithm (FcM) is a widely used clustering algorithm. It is well known that the fuzzifier, m, which is also called fuzzy weighting exponent, has a significant impact on the performance of the FcM. M... 详细信息
来源: 评论
classification of Defects in a Thermal Barrier coating Layer using the fuzzy c-means algorithm
收藏 引用
INTERNATIONAL JOURNAL OF PREcISION ENGINEERING AND MANUFAcTURING 2015年 第1期16卷 53-57页
作者: Kim, Pyeong-Ho Kim, Jeong-Suk Park, Jin-Hyo Lee, Ku-Hyeun Song, Yo-Seung Lee, Deuk-Yong Pusan Natl Univ Sch Mech Engn ERC NSDM Pusan 609735 South Korea Korea Inst Machinery & Mat Surface Technol Res Ctr Chang Won 642831 Gyeongnam South Korea Korea Aerosp Univ Dept Mat Engn Goyang Si 412791 Gyeonggi Do South Korea Daelim Univ Dept Mat Engn Anyang Si 431715 Gyeonggi Do South Korea
A thermally grown oxide (TGO) layer of Al2O3 is formed between a coNicrAlY bond coating and a zirconia top coating of a thermal barrier coating (TBc) system on an Inconel 738 substrate during exposure at 1050 degrees ... 详细信息
来源: 评论
An new initialization method for fuzzy c-means algorithm
收藏 引用
fuzzy OPTIMIZATION AND DEcISION MAKING 2008年 第4期7卷 409-416页
作者: Zou, Kaiqi Wang, Zhiping Hu, Ming Dalian Univ Technol Coll Informat Engn Univ Key Lab Informat Sci & Ingn Dalian 116622 Peoples R China
In this paper an initialization method for fuzzy c-means (FcM) algorithm is proposed in order to solve the two problems of clustering performance affected by initial cluster centers and lower computation speed for FcM... 详细信息
来源: 评论
A Generalized Approach to the Suppressed fuzzy c-means algorithm
A Generalized Approach to the Suppressed Fuzzy <i>c</i>-Mean...
收藏 引用
7th International conference on Modeling Decisions for Artificial Intelligence (MDAI)
作者: Szilagyi, Laszlo Szilagyi, Sandor M. Kiss, csilla Sapientia Hungarian Sci Univ Transylvania Fac Tech & Human Sci Targu Mures Romania
Suppressed fuzzy c-means (s-FcM) clustering was introduced with the intention of combining the higher convergence speed of hard c-means (HcM) clustering with the finer partition quality of fuzzy c-means (FcM) algorith... 详细信息
来源: 评论
Performance research of Gaussian function weighted fuzzy c-means algorithm
Performance research of Gaussian function weighted fuzzy C-m...
收藏 引用
conference on Pattern Recognition and computer Vision
作者: Liu, Xiaofang Li, Xiaowen Yang, chun He, Binbin Zhang, Ying Univ Elect Sci & Technol China Inst Geospatial Informat Sci & Technol Chengdu 610054 Peoples R China Sichuan Univ Dept Comp Sci & Technol Zigong 643000 Peoples R China Sichuan Univ Dept Engn Management Zigong 643000 Peoples R China
fuzzy c-means (FcM) algorithm is a fuzzy pattern recognition method. clustering precision of the algorithm is affectedby its equal partition trend for data set of large discrepancy of each class samples number, and th... 详细信息
来源: 评论
Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models
Analytical and numerical evaluation of the suppressed fuzzy ...
收藏 引用
5th International conference on Modeling Decisions for Artificial Intelligence
作者: Szilagyi, Laszlo Szilagyi, Sandor M. Benyo, Zoltan Sapientia Univ Transylvania Fac Tech & Human Sci Corunca 547367 Romania Budapest Univ Technol & Econ Dept Control Engn & Informat Technol H-1117 Budapest Hungary
Suppressed fuzzy c-means (s-FcM) clustering was introduced in Fan et al. (Pattern Recogn Lett 24: 1607-1612, 2003) with the intention of combining the higher speed of hard c-means (HcM) clustering with the better clas... 详细信息
来源: 评论