咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献

馆藏范围

  • 9 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 理学
    • 8 篇 数学
    • 1 篇 物理学
  • 3 篇 工学
    • 3 篇 计算机科学与技术...

主题

  • 9 篇 generalized jaco...
  • 2 篇 fractional calcu...
  • 2 篇 superconvergence
  • 2 篇 spectral method
  • 2 篇 fractional deriv...
  • 2 篇 fractional diffe...
  • 1 篇 non-classical la...
  • 1 篇 approximation re...
  • 1 篇 fractional ordin...
  • 1 篇 error bounds
  • 1 篇 weighted sobolev...
  • 1 篇 fractional deriv...
  • 1 篇 generalized asso...
  • 1 篇 jacobi polyfract...
  • 1 篇 galerkin and pet...
  • 1 篇 preconditioner m...
  • 1 篇 jacobi expansion...
  • 1 篇 projection error
  • 1 篇 jacobi polynomia...
  • 1 篇 riesz fractional...

机构

  • 2 篇 wayne state univ...
  • 2 篇 beijing computat...
  • 2 篇 purdue univ dept...
  • 2 篇 nanyang technol ...
  • 1 篇 nanjing audit un...
  • 1 篇 jiangsu ocean un...
  • 1 篇 amirkabir univ t...
  • 1 篇 harbin inst tech...
  • 1 篇 xiamen univ fuji...
  • 1 篇 tarbiat modares ...
  • 1 篇 fujian provincia...
  • 1 篇 shenzhen msu bit...
  • 1 篇 southeast univ d...
  • 1 篇 department of ma...
  • 1 篇 southeast univ s...
  • 1 篇 kharazmi univ fa...
  • 1 篇 xiamen univ sch ...

作者

  • 2 篇 zhang zhimin
  • 2 篇 zhao xuan
  • 2 篇 shen jie
  • 1 篇 dehghan mehdi
  • 1 篇 jie shen
  • 1 篇 babolian e.
  • 1 篇 deng beichuan
  • 1 篇 javadi s.
  • 1 篇 liu guidong
  • 1 篇 khosravian-arab ...
  • 1 篇 lv xiaoguang
  • 1 篇 changtao sheng
  • 1 篇 yang changqing
  • 1 篇 eslahchi m. r.
  • 1 篇 wang li-lian
  • 1 篇 chen sheng
  • 1 篇 duan beiping
  • 1 篇 liu wenjie
  • 1 篇 erfani s.
  • 1 篇 sheng chang-tao

语言

  • 8 篇 英文
  • 1 篇 其他
检索条件"主题词=generalized Jacobi functions"
9 条 记 录,以下是1-10 订阅
排序:
generalized jacobi functions AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS
收藏 引用
MATHEMATICS OF COMPUTATION 2016年 第300期85卷 1603-1638页
作者: Chen, Sheng Shen, Jie Wang, Li-Lian Xiamen Univ Sch Math Sci Xiamen 361005 Fujian Peoples R China Xiamen Univ Fujian Prov Key Lab Math Modeling & High Performa Xiamen 361005 Fujian Peoples R China Purdue Univ Dept Math W Lafayette IN 47907 USA Nanyang Technol Univ Sch Phys & Math Sci Div Math Sci Singapore 637371 Singapore
In this paper, we consider spectral approximation of fractional differential equations (FDEs). A main ingredient of our approach is to define a new class of generalized jacobi functions (GJFs), which is intrinsically ... 详细信息
来源: 评论
generalized jacobi spectral Galerkin method for fractional pantograph differential equation
收藏 引用
MATHEMATICAL METHODS IN THE APPLIED SCIENCES 2021年 第1期44卷 153-165页
作者: Yang, Changqing Lv, Xiaoguang Jiangsu Ocean Univ Dept Sci Lianyungang 222005 Jiangsu Peoples R China
This work is concerned with the extension of the jacobi spectral Galerkin method to a class of nonlinear fractional pantograph differential equations. First, the fractional differential equation is converted to a nonl... 详细信息
来源: 评论
Estimates for coefficients in jacobi series for functions with limited regularity by fractional calculus
收藏 引用
ADVANCES IN COMPUTATIONAL MATHEMATICS 2024年 第4期50卷 68-68页
作者: Liu, Guidong Liu, Wenjie Duan, Beiping Nanjing Audit Univ Sch Math Nanjing 211815 Peoples R China Harbin Inst Technol Sch Math Harbin 150001 Peoples R China Shenzhen MSU BIT Univ Fac Computat Math & Cybernet Shenzhen 518172 Peoples R China
In this paper, optimal estimates on the decaying rates of jacobi expansion coefficients are obtained by fractional calculus for functions with algebraic and logarithmic singularities. This is inspired by the fact that... 详细信息
来源: 评论
Error estimates of generalized spectral iterative methods with accurate convergence rates for solving systems of fractional two - point boundary value problems
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2020年 364卷 124638-124638页
作者: Erfani, S. Babolian, E. Javadi, S. Kharazmi Univ Fac Math Sci & Comp 50 Taleghani Ave Tehran *** Iran
The main purpose of this study is to provide an efficient spectral iterative method based on fractional interpolants for solving a class of linear and nonlinear fractional two - point boundary value problems involving... 详细信息
来源: 评论
Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2019年 第3期81卷 1577-1601页
作者: Deng, Beichuan Zhang, Zhimin Zhao, Xuan Wayne State Univ Dept Math Detroit MI 48202 USA Beijing Computat Sci Res Ctr Beijing 100193 Peoples R China Southeast Univ Sch Math Nanjing 210096 Jiangsu Peoples R China
In this paper, superconvergence points are located for the approximation of the Riesz derivative of order a using classical Lobatto-type polynomials when a. (0, 1) and generalized jacobi functions (GJF) for arbitrary ... 详细信息
来源: 评论
An Efficient Space-Time Method for Time Fractional Diffusion Equation
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2019年 第2期81卷 1088-1110页
作者: Shen, Jie Sheng, Chang-Tao Purdue Univ Dept Math W Lafayette IN 47907 USA Nanyang Technol Univ Sch Phys & Math Sci Div Math Sci Singapore 637371 Singapore
A space-time Petrov-Galerkin spectral method for time fractional diffusion equations is developed in this paper. The Petrov-Galerkin method is used to simplify the computation of stiffness matrix but leads to full non... 详细信息
来源: 评论
Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2017年 338卷 527-566页
作者: Khosravian-Arab, Hassan Dehghan, Mehdi Eslahchi, M. R. Amirkabir Univ Technol Fac Math & Comp Sci Dept Appl Math 424 Hafez Ave Tehran Iran Tarbiat Modares Univ Fac Math Sci Dept Appl Math POB 14115-134 Tehran Iran
This paper is intended to provide exponentially accurate Galerkin, Petrov-Galerkin and pseudo-spectral methods for fractional differential equations on a semi-infinite interval. We start our discussion by introducing ... 详细信息
来源: 评论
A Hybrid Spectral Element Method for Fractional Two-Point Boundary Value Problems
收藏 引用
高等学校计算数学学报(英文版) 2017年 第2期10卷 437-464页
作者: Changtao Sheng Jie Shen Fujian Provincial Key Laboratory on Mathematical Modeling & High Performance Scientific Computing and School of Mathematical Sciences Xiamen University Xiamen Fujian 361005 China Fujian Provincial Key Laboratory on Mathematical Modeling & High Performance Scientific Computing and School of Mathematical Sciences Xiamen University Xiamen Fujian 361005 China Department of Mathematics Purdue University West LafayetteIN 47907-1957 USA
We propose a hybrid spectral element method for fractional two-point boundary value problem (FBVPs) involving both Caputo and Riemann-Liouville (RL)fractional *** first formulate these FBVPs as a second kind Volterra ... 详细信息
来源: 评论
SUPERCONVERGENCE POINTS OF FRACTIONAL SPECTRAL INTERPOLATION
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2016年 第1期38卷 A598-A613页
作者: Zhao, Xuan Zhang, Zhimin Southeast Univ Dept Math Nanjing 210096 Jiangsu Peoples R China Beijing Computat Sci Res Ctr Beijing 100193 Peoples R China Wayne State Univ Dept Math Detroit MI 48202 USA
We investigate superconvergence properties of the spectral interpolation involving fractional derivatives. Our interest in this superconvergence problem is, in fact, twofold: when interpolating function values, we ide... 详细信息
来源: 评论