咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献

馆藏范围

  • 9 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 理学
    • 9 篇 数学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 9 篇 generalized inve...
  • 3 篇 infinitely many ...
  • 3 篇 duality theorems
  • 2 篇 discrete minmax ...
  • 2 篇 generalized inve...
  • 2 篇 mathematical pro...
  • 2 篇 multiobjective f...
  • 2 篇 semi-infinite pr...
  • 1 篇 riemannian manif...
  • 1 篇 clarke's subdiff...
  • 1 篇 invariant monoto...
  • 1 篇 mathematical pro...
  • 1 篇 monotone vector ...
  • 1 篇 sufficient optim...
  • 1 篇 generalized inva...
  • 1 篇 duality models
  • 1 篇 variational-like...
  • 1 篇 parametric duali...
  • 1 篇 afline
  • 1 篇 generalized inva...

机构

  • 2 篇 hong kong polyte...
  • 2 篇 no michigan univ...
  • 2 篇 chongqing normal...
  • 1 篇 univ isfahan dep...
  • 1 篇 pukyong natl uni...
  • 1 篇 chongqing normal...
  • 1 篇 univ isfahan dep...
  • 1 篇 department of ma...

作者

  • 2 篇 yang xq
  • 2 篇 teo kl
  • 2 篇 zhang qinghong
  • 2 篇 yang xm
  • 2 篇 zalmai g. j.
  • 1 篇 zafarani j.
  • 1 篇 barani a.
  • 1 篇 qing-hong zhang
  • 1 篇 pouryayevali m. ...
  • 1 篇 kim ds
  • 1 篇 g.j. zalmai
  • 1 篇 peng jw
  • 1 篇 jabarootian t.

语言

  • 9 篇 英文
检索条件"主题词=generalized invex functions"
9 条 记 录,以下是1-10 订阅
排序:
Global nonparametric sufficient optimality conditions for semi-infinite discrete minmax fractional programming problems involving generalized (η,ρ)-invex functions
收藏 引用
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 2007年 第1-2期28卷 173-209页
作者: Zalmai, G. J. Zhang, Qinghong No Michigan Univ Dept Math & Comp Sci Marquette MI 49855 USA
In this paper, we establish a set of necessary optimality conditions and discuss a fairly large number of sets of global nonparametric sufficient optimality criteria under various generalized (eta, rho)-invexity assum... 详细信息
来源: 评论
Parametric Duality Models for Semiinfinite Multiobjective Fractional Programming Problems Containing generalized (α, η, ρ)-V-invex functions
收藏 引用
Acta Mathematicae Applicatae Sinica 2013年 第2期29卷 225-240页
作者: G.J. ZALMAI Qing-hong ZHANG Department of Mathematics and Computer Science Northern Michigan University
In this paper, we present several parametric duality results under various generalized (a,v,p)-V- invexity assumptions for a semiinfinite multiobjective fractional programming problem.
来源: 评论
Nonparametric duality models for semi-infinite discrete minmax fractional programming problems involving generalized (η,ρ)-invex functions
收藏 引用
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 2007年 第1-2期28卷 211-243页
作者: Zalmai, G. J. Zhang, Qinghong No Michigan Univ Dept Math & Comp Sci Marquette MI 49855 USA
In this paper, we discuss a fairly large number of nonparametric duality results under various generalized (eta, rho)-invexity assumptions for a semi-infinite minmax fractional programming problem.
来源: 评论
generalized invexity and generalized invariant monotonicity
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 2003年 第3期117卷 607-625页
作者: Yang, XM Yang, XQ Teo, KL Chongqing Normal Univ Dept Math Chongqing Peoples R China Hong Kong Polytech Univ Dept Appl Math Kowloon Hong Kong Peoples R China
In this paper, several kinds of invariant monotone maps and generalized invariant monotone maps are introduced. Some examples are given which show that invariant monotonicity and generalized invariant monotonicity are... 详细信息
来源: 评论
Invariant monotone vector fields on Riemannian manifolds
收藏 引用
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 2009年 第5期70卷 1850-1861页
作者: Barani, A. Pouryayevali, M. R. Univ Isfahan Dept Math Esfahan Iran
Various concepts of invariant monotone vector fields on Riemannian manifolds are introduced. Some examples of invariant monotone vector fields are given. Several notions of invexities for functions on Riemannian manif... 详细信息
来源: 评论
generalized invariant monotonicity and invexity of non-differentiable functions
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2006年 第4期36卷 537-564页
作者: Jabarootian, T. Zafarani, J. Univ Isfahan Dept Math Esfahan 81745163 Iran
This paper is devoted to the study of relationships between several kinds of generalized invexity of locally Lipschitz functions and generalized monotonicity of corresponding Clarke's subdifferentials. In particul... 详细信息
来源: 评论
Criteria for generalized invex monotonicities
收藏 引用
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 2005年 第1期164卷 115-119页
作者: Yang, XM Yang, XQ Teo, KL Hong Kong Polytech Univ Dept Appl Math Kowloon Hong Kong Peoples R China Chongqing Normal Univ Dept Math Chongqing 400047 Peoples R China
In this paper, under appropriate conditions, we establish that (i) if the gradient of a function is (strictly) pseudo-monotone, then the function is (strictly) pseudo-invex;(ii) if the gradient of a function is quasi-... 详细信息
来源: 评论
Criteria for generalized invex monotonicities without Condition C
收藏 引用
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 2006年 第2期170卷 667-671页
作者: Peng, JW Chongqing Normal Univ Fac Math & Comp Sci Chongqing 400047 Peoples R China
In this paper, some necessary conditions of (strictly) pseudo-invex monotonicity and quasi-invex monotonicity are established with the condition that eta is affine in the first argument and skew instead of Condition C... 详细信息
来源: 评论
Nonsmooth multiobjective fractional programming with generalized invexity
收藏 引用
TAIWANESE JOURNAL OF MATHEMATICS 2006年 第2期10卷 467-478页
作者: Kim, DS Pukyong Natl Univ Dept Appl Math Pusan 608737 South Korea
In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessar... 详细信息
来源: 评论