咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 交通运输工程

主题

  • 1 篇 urban expressway
  • 1 篇 normal condition...
  • 1 篇 support vector r...
  • 1 篇 support vector m...
  • 1 篇 regression analy...
  • 1 篇 traffic conditio...
  • 1 篇 trees (mathemati...
  • 1 篇 least absolute s...
  • 1 篇 short-term traff...
  • 1 篇 short-term traff...
  • 1 篇 lasso model
  • 1 篇 multistep-ahead ...
  • 1 篇 random forests
  • 1 篇 training set
  • 1 篇 remote traffic m...
  • 1 篇 road traffic
  • 1 篇 robust responsiv...
  • 1 篇 test set
  • 1 篇 gbrt model
  • 1 篇 abnormal conditi...

机构

  • 1 篇 tsinghua univ de...
  • 1 篇 zhejiang univ co...

作者

  • 1 篇 li li
  • 1 篇 chen xiqun (mich...
  • 1 篇 zhang shuaichao

语言

  • 1 篇 英文
检索条件"主题词=gradient boosting regression trees integration model"
1 条 记 录,以下是1-10 订阅
排序:
Multi-model ensemble for short-term traffic flow prediction under normal and abnormal conditions
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2019年 第2期13卷 260-268页
作者: Chen, Xiqun (Michael) Zhang, Shuaichao Li, Li Zhejiang Univ Coll Civil Engn & Architecture Hangzhou 310058 Zhejiang Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
Accurate traffic flow prediction under abnormal conditions, such as accidents, adverse weather, work zones, and holidays, is significant for proactive traffic control. Here, the authors focus on a special challenge of... 详细信息
来源: 评论