咨询与建议

限定检索结果

文献类型

  • 59 篇 期刊文献
  • 49 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 80 篇 计算机科学与技术...
    • 51 篇 电气工程
    • 42 篇 信息与通信工程
    • 18 篇 软件工程
    • 5 篇 控制科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
    • 1 篇 石油与天然气工程
  • 11 篇 理学
    • 5 篇 生物学
    • 4 篇 物理学
    • 4 篇 化学
    • 1 篇 数学
    • 1 篇 地球物理学
  • 4 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 109 篇 gradient compres...
  • 33 篇 federated learni...
  • 20 篇 training
  • 17 篇 deep learning
  • 14 篇 servers
  • 12 篇 convergence
  • 12 篇 computational mo...
  • 10 篇 distributed trai...
  • 8 篇 distributed lear...
  • 8 篇 quantization (si...
  • 8 篇 data models
  • 7 篇 optimization
  • 7 篇 quantization
  • 7 篇 distributed deep...
  • 7 篇 federated learni...
  • 6 篇 sparsification
  • 5 篇 internet of thin...
  • 5 篇 neural networks
  • 5 篇 machine learning
  • 5 篇 accuracy

机构

  • 5 篇 beijing univ pos...
  • 3 篇 nanyang technol ...
  • 3 篇 univ sci & techn...
  • 3 篇 kaust thuwal
  • 3 篇 natl univ def te...
  • 2 篇 univ houston dep...
  • 2 篇 chinese acad sci...
  • 2 篇 imec kapeldreef ...
  • 2 篇 guangdong prov k...
  • 2 篇 ucl england
  • 2 篇 univ texas san a...
  • 2 篇 guangzhou univ s...
  • 2 篇 univ houston dep...
  • 2 篇 univ chinese aca...
  • 2 篇 vmware res palo ...
  • 2 篇 sun yat sen univ...
  • 2 篇 waters corp milf...
  • 2 篇 singapore univ t...
  • 2 篇 univ toronto ele...
  • 2 篇 tsinghua univ de...

作者

  • 4 篇 chen yiming
  • 4 篇 deligiannis niko...
  • 4 篇 pan miao
  • 3 篇 wang tsun-hsien
  • 3 篇 wang jingyu
  • 3 篇 abrahamyan lusin...
  • 3 篇 dong dezun
  • 3 篇 wu weigang
  • 3 篇 chiu ching-te
  • 3 篇 canini marco
  • 3 篇 yu enda
  • 3 篇 kang jiawen
  • 3 篇 chuang chen-yu
  • 3 篇 tsay ren-song
  • 3 篇 ke wei-ming
  • 2 篇 ma huahong
  • 2 篇 niyato dusit
  • 2 篇 chen jianrui
  • 2 篇 qin xiaoqi
  • 2 篇 zhang lei

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=gradient compression"
109 条 记 录,以下是1-10 订阅
排序:
An energy-efficient federated learning method with gradient compression and parameter optimization
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 1-18页
作者: Huang, Huijie Chen, Zhenping Lu, You Zuo, Yi Feng, Jing Suzhou Univ Sci & Technol Suzhou 215009 Jiangsu Peoples R China Jiangsu Ind Intelligent & Low Carbon Technol Engn Suzhou 215000 Peoples R China Suzhou Key Lab Intelligent Low Carton Technol Appl Suzhou 215009 Jiangsu Peoples R China
To address the communication bottleneck in federated learning, in this paper, an energy-efficient gradient compression method called Qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackag... 详细信息
来源: 评论
Federated Learning for IoV Adaptive Vehicle Clusters: A Dynamic gradient compression Strategy
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2025年 第11期12卷 17526-17541页
作者: Xing, Ling Zhao, Pengcheng Gao, Jianping Wu, Honghai Ma, Huahong Zhang, Xiaohui Henan Univ Sci & Technol Coll Informat Engn Luoyang 471003 Peoples R China Henan Univ Sci & Technol Sch Software Luoyang 471003 Peoples R China Henan Univ Sci & Technol Coll Vehicle & Traff Engn Luoyang 471003 Peoples R China
Federated learning (FL) has been extensively utilized in distributed learning scenarios for the Internet of Vehicles (IoV). However, two key challenges exist: 1) gradients are frequently transmitted between vehicles d... 详细信息
来源: 评论
Stochastic gradient compression for Federated Learning over Wireless Network
收藏 引用
China Communications 2024年 第4期21卷 230-247页
作者: Lin Xiaohan Liu Yuan Chen Fangjiong Huang Yang Ge Xiaohu School of Electronic and Information Engineering South China University of TechnologyGuangzhou 510641China Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space Ministry of Industry and Information TechnologyNanjing University of Aeronautics and AstronauticsNanjing 210016China School of Electronic Information and Communications Huazhong University of Science and TechnologyWuhan 430074China
As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dim... 详细信息
来源: 评论
GFL-ALDPA: a gradient compression federated learning framework based on adaptive local differential privacy budget allocation
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第9期83卷 26349-26368页
作者: Yang, Jiawei Chen, Shuhong Wang, Guojun Wang, Zijia Jie, Zhiyong Arif, Muhammad Guangzhou Univ Sch Comp Sci & Cyber Engn Guangzhou 510006 Guangdong Peoples R China Super Univ Dept Comp Sci Lahore 54000 Pakistan
Federated learning(FL) is a popular distributed machine learning framework which can protect users' private data from being exposed to adversaries. However, related work shows that sensitive private information ca... 详细信息
来源: 评论
Beyond Throughput and compression Ratios: Towards High End-to-end Utility of gradient compression  3
Beyond Throughput and Compression Ratios: Towards High End-t...
收藏 引用
23rd Workshop on Hot Topics in Networks
作者: Han, Wenchen Vargaftik, Shay Mitzenmacher, Michael Karp, Brad Ben Basat, Ran UCL London England VMware Res Palo Alto CA USA Harvard Univ Cambridge MA 02138 USA
gradient aggregation has long been identified as a major bottleneck in today's large-scale distributed machine learning training systems. One promising solution to mitigate such bottlenecks is gradient compression... 详细信息
来源: 评论
FedSC: Compatible gradient compression for Communication-Efficient Federated Learning  23rd
FedSC: Compatible Gradient Compression for Communication-Eff...
收藏 引用
23rd International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
作者: Yu, Xinlei Gao, Zhipeng Zhao, Chen Mo, Zijia Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing Peoples R China
Federated Learning (FL) communication costs hinge on communication frequency, device count, and per-communication-round costs. Ideally, minimizing these within the device cluster tolerance significantly curtails data ... 详细信息
来源: 评论
A Joint Approach to Local Updating and gradient compression for Efficient Asynchronous Federated Learning  30th
A Joint Approach to Local Updating and Gradient Compression ...
收藏 引用
30th European Conference on Parallel and Distributed Processing (Euro-Par)
作者: Song, Jiajun Luo, Jiajun Lu, Rongwei Xie, Shuzhao Chen, Bin Wang, Zhi Tsinghua Univ SIGS Shenzhen Peoples R China Tsinghua Univ TBSI Shenzhen Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Shenzhen Peoples R China
Asynchronous Federated Learning (AFL) confronts inherent challenges arising from the heterogeneity of devices (e.g., their computation capacities) and low-bandwidth environments, both potentially causing stale model u... 详细信息
来源: 评论
SGC: Similarity-Guided gradient compression for Distributed Deep Learning  32
SGC: Similarity-Guided Gradient Compression for Distributed ...
收藏 引用
IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)
作者: Liu, Jingling Huang, Jiawei Li, Yijun Li, Zhaoyi Lyu, Wenjun Jiang, Wenchao Wang, Jianxin Cent South Univ Changsha Peoples R China Rutgers State Univ New Brunswick NJ USA Singapore Univ Technol & Design Singapore Singapore
The collective communication has become the bottleneck of large-scale distributed deep learning due to the huge volume of gradients aggregated during the training process. Despite much recent progress in reducing traf... 详细信息
来源: 评论
When ML Training Cuts Through Congestion: Just-in-Time gradient compression via Packet Trimming  3
When ML Training Cuts Through Congestion: Just-in-Time Gradi...
收藏 引用
23rd Workshop on Hot Topics in Networks
作者: Chen, Xiaoqi Vargaftik, Shay Ben Basat, Ran Purdue Univ W Lafayette IN 47907 USA VMware Res Palo Alto CA USA UCL London England VMware Res Grp Palo Alto CA USA
Distributed training of ML models generates significant network traffic when exchanging gradients and is sensitive to packet drops and retransmission caused by congestion when other traffic is sharing the network. Whi... 详细信息
来源: 评论
Enhancing gradient compression for Distributed Deep Learning  8
Enhancing Gradient Compression for Distributed Deep Learning
收藏 引用
8th Asia-Pacific Workshop on Networking (APNET)
作者: Bai, Zhe Yu, Enda Dong, Dezun Lu, Pingjing Natl Univ Def Technol Coll Comp Changsha Peoples R China
来源: 评论