咨询与建议

限定检索结果

文献类型

  • 79 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 85 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 9 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 28 篇 理学
    • 19 篇 生物学
    • 8 篇 数学
    • 4 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 114 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 10 篇 deep learning
  • 10 篇 graph convolutio...
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 graph convolutio...
  • 4 篇 task analysis
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 kernel
  • 4 篇 network embeddin...
  • 3 篇 fault diagnosis

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 110 篇 英文
检索条件"主题词=graph autoencoder"
114 条 记 录,以下是101-110 订阅
排序:
MM-LogVec: System Log Anomaly Detection Method Based on Multimodal Representation Learning
MM-LogVec: System Log Anomaly Detection Method Based on Mult...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Jingwen Zhang, Ru Liu, Jianyi Beijing Univ. of Posts & Telecom. Beijing China
Advanced persistent threats (APTs) pose significant risks to national infrastructure and corporate security. System logs record interactions between system entities, which are widely used for APT detection. However, t... 详细信息
来源: 评论
MinerFinder: A GAE-LSTM method for predicting location of miners in underground  22
MinerFinder: A GAE-LSTM method for predicting location of mi...
收藏 引用
30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS)
作者: Goyal, Abhay Madria, Sanjay Frimpong, Samuel Missouri S&T Dept CS Rolla MO 65409 USA
Recent reports by the Mine Safety and Health Administration suggest that several injuries and fatalities could be attributed to the inability to accurately locate miners in case of disasters. Since underground mines h... 详细信息
来源: 评论
Adversarial random graph neural network for anomaly detection
收藏 引用
DIGITAL SIGNAL PROCESSING 2024年 146卷
作者: Tuzen, Ahmet Yaslan, Yusuf Aselsan Inc Ankara Turkiye Istanbul Tech Univ Istanbul Turkiye
Anomaly detection is distinguishing unusual objects from normal patterns. It is a complex task due to unpredictable nature of anomalies, which can appear in many forms or they can be hidden by mimicking normal behavio... 详细信息
来源: 评论
Deep multi-view graph clustering network with weighting mechanism and collaborative training
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 236卷
作者: Liu, Jing Cao, Fuyuan Jing, Xuechun Liang, Jiye Shanxi Univ Sch Comp & Informat Technol Key Lab Computat Intelligence & Chinese Informat P Minist Educ Taiyuan 030006 Peoples R China Shanxi Agr Univ Sch Software Taigu 030801 Peoples R China
With the development of graph convolutional network (GCN), which is powerful in graph embedding learning meanwhile can capture node feature information, deep multi-view graph clustering methods based on graph autoenco... 详细信息
来源: 评论
Multi-scale graph clustering network
收藏 引用
INFORMATION SCIENCES 2024年 678卷
作者: Li, Xiulai Wu, Wei Zhang, Bin Peng, Xin Zhejiang Univ Hainan Inst Sanya 572025 Peoples R China Hainan Univ Sch Cyberspace Secur Haikou 570228 Peoples R China Hainan Hairui Zhong Chuang Technol Co Ltd R&D Haikou 570228 Peoples R China
Deep graph clustering, a fundamental yet formidable task in data analysis, aims to partition samples belonging to the same category into their respective clusters. Recently, significant advancements in graph self -sup... 详细信息
来源: 评论
Spatial-Spectral graph Contrastive Clustering With Hard Sample Mining for Hyperspectral Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷
作者: Guan, Renxiang Tu, Wenxuan Li, Zihao Yu, Hao Hu, Dayu Chen, Yuzeng Tang, Chang Yuan, Qiangqiang Liu, Xinwang Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China Hainan Univ Sch Comp Sci & Technol Haikou 570228 Hainan Peoples R China China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Wuhan Univ Sch Geodesy & Geomat Wuhan 430079 Peoples R China
Hyperspectral image (HSI) clustering is a fundamental yet challenging task that groups image pixels with similar features into distinct clusters. Among various approaches, contrastive learning methods, which employ th... 详细信息
来源: 评论
graph Representation Learning of Banking Transaction Network with EdgeWeight-Enhanced Attention and Textual Information  22
Graph Representation Learning of Banking Transaction Network...
收藏 引用
31st ACM Web Conference (WWW)
作者: Minakawa, Naoto Izumi, Kiyoshi Sakaji, Hiroki Sano, Hitomi Univ Tokyo Tokyo Japan
In this paper, we propose a novel approach to capture inter-company relationships from banking transaction data using graph neural networks with a special attention mechanism and textual industry or sector information... 详细信息
来源: 评论
BEDetector: A Two-Channel Encoding Method to Detect Vulnerabilities Based on Binary Similarity
收藏 引用
IEEE ACCESS 2021年 9卷 51631-51645页
作者: Yu, Lu Lu, Yuliang Shen, Yi Huang, Hui Zhu, Kailong Natl Univ Def Technol Coll Elect Engn Hefei 230007 Peoples R China Anhui Prov Key Lab Cyberspace Secur Situat Awaren Hefei 230007 Peoples R China
Applying neural network technology to binary similarity detection has become a promising search topic, and vulnerability detection is an important application field of binary similarity detection. When embedding binar... 详细信息
来源: 评论
Learning style detection based on graph embedding enhancement  25
Learning style detection based on graph embedding enhancemen...
收藏 引用
Proceedings of the 2025 International Conference on Big Data and Informatization Education
作者: Jiayi Ma Zhiyuan Liu Business School Shandong Normal University Jinan Shandong China
In the “Internet and Education” era, accurately detecting students' learning styles is an indispensable part of personalized educational resource recommendations. Learning style is crucial for providing customiz... 详细信息
来源: 评论
GRL-LS: A learning style detection in online education using graph representation learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 201卷 1页
作者: Muhammad, Bello Ahmad Qi, Chao Wu, Zhenqiang Ahmad, Hafsa Kabir Minist Educ Key Lab Modern Teaching Technol Xian 710062 Shaanxi Peoples R China Shaanxi Normal Univ Sch Comp Sci Xian 710062 Peoples R China Bayero Univ Kano Kano 700241 Nigeria
The accessibility and popularity of online learning have aided the spread of modern learning systems, which provide numerous opportunities for studying the behavior of learners and improving their learning quality. In... 详细信息
来源: 评论