咨询与建议

限定检索结果

文献类型

  • 77 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 82 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 8 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 26 篇 理学
    • 17 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 111 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 9 篇 deep learning
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 9 篇 graph convolutio...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 task analysis
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 network embeddin...
  • 3 篇 fault diagnosis
  • 3 篇 graph convolutio...
  • 3 篇 anomaly detectio...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 110 篇 英文
  • 1 篇 其他
检索条件"主题词=graph autoencoder"
111 条 记 录,以下是31-40 订阅
排序:
Dual-Adaptive Fusion Multi-View Clustering Based on graph autoencoder
Dual-Adaptive Fusion Multi-View Clustering Based on Graph Au...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Niu, Changyong Wu, Mengqi Zhou, Lijuan Zhengzhou Univ Sch Comp & Artificial Intelligence Zhengzhou Peoples R China
The widespread application of multi-view graph data has facilitated the development of multi-view graph clustering. Effectively learning multi-view node representations is crucial for discovering inherent patterns in ... 详细信息
来源: 评论
scGASI: A graph autoencoder-Based Single-Cell Integration Clustering Method  19th
scGASI: A Graph Autoencoder-Based Single-Cell Integration Cl...
收藏 引用
19th International Symposium on Bioinformatics Research and Applications
作者: Qiao, Tian-Jing Li, Feng Yuan, Shasha Dai, Ling-Yun Wang, Juan Qufu Normal Univ Sch Comp Sci Rizhao 276826 Peoples R China
Single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to study biological issues at the cellular level. The identification of single-cell types by unsupervised clustering is a basic goal of scRNA-se... 详细信息
来源: 评论
graphCAR: Content-aware Multimedia Recommendation with graph autoencoder  18
GraphCAR: Content-aware Multimedia Recommendation with Graph...
收藏 引用
41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Xu, Qidi Shen, Fumin Liu, Li Shen, Heng Tao Univ Elect Sci & Technol China Ctr Future Media Chengdu Sichuan Peoples R China Univ East Anglia Sch Comp Sci Norwich Norfolk England
Precisely recommending relevant multimedia items from massive candidates to a large number of users is an indispensable yet difficult task on many platforms. A promising way is to project users and items into a latent... 详细信息
来源: 评论
Epitomic Variational graph autoencoder  25
Epitomic Variational Graph Autoencoder
收藏 引用
25th International Conference on Pattern Recognition (ICPR)
作者: Khan, Rayyan Ahmad Anwaar, Muhammad Umer Kleinsteuber, Martin Tech Univ Munich Munich Germany Mercateo AG Munich Germany
Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. [3] in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phe... 详细信息
来源: 评论
A graph autoencoder Approach to Crowdsourcing  13
A Graph Autoencoder Approach to Crowdsourcing
收藏 引用
13rd IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)
作者: Traganitis, Panagiotis A. Kanatsoulis, Charilaos I. Michigan State Univ Dept Elect & Comp Engn E Lansing MI 48824 USA Stanford Univ Dept Comp Sci Palo Alto CA 94304 USA
Crowdsourcing deals with combining and aggregating labels from crowds of annotators of unknown reliability. While most works on label aggregation operate under the assumption of independent and identically distributed... 详细信息
来源: 评论
DNGAE: Deep Neighborhood graph autoencoder for Robust Blind Hyperspectral Unmixing  15th
DNGAE: Deep Neighborhood Graph Autoencoder for Robust Blind ...
收藏 引用
15th International Conference on Computational Collective Intelligence (ICCCI)
作者: Hanachi, Refka Sellami, Akrem Farah, Imed Riadh Mura, Mauro Dalla Univ Manouba RIADI Lab ENSI Manouba 2010 Tunisia Univ Lille Sci & Technol CRIStAL Lab Batiment Esprit F-59655 Villeneuve Dascq France IMT Atlant ITI Dept 655 Ave Technopole F-29280 Plouzane France Univ Grenoble Alpes Grenoble INP GIPSA Lab CNRS F-38000 Grenoble France
Recently, Deep Learning (DL)-based unmixing techniques have gained popularity owing to the robust learning of Deep Neural Networks (DNNs). In particular, the autoencoder (AE) model, as a baseline network for unmixing,... 详细信息
来源: 评论
Superpixel-Based Dual-Neighborhood Contrastive graph autoencoder for Deep Subspace Clustering of Hyperspectral Image  20th
Superpixel-Based Dual-Neighborhood Contrastive Graph Autoenc...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Li, Junhong Guan, Renxiang Han, Yuhang Hu, Yaowen Li, Zihao Wu, Yanyan Xu, Ziwei Li, Xianju China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Natl Univ Def Technol Sch Comp Changsha 410073 Peoples R China Northeast Forestry Univ Coll Aulin Harbin 150040 Peoples R China
Deep subspace clustering of hyperspectral image (HSI) holds paramount importance for the fine classification of ground elements like land cover and geological units. While graph-based deep subspace learning effectivel... 详细信息
来源: 评论
A Self-supervised graph autoencoder with Barlow Twins  19th
A Self-supervised Graph Autoencoder with Barlow Twins
收藏 引用
19th Pacific Rim International Conference on Artificial Intelligence (PRICAI)
作者: Li, Jingci Lu, Guangquan Li, Jiecheng Guangxi Normal Univ Guangxi Key Lab Multi Source Informat Min & Secur Guilin 541004 Peoples R China
Self-supervised graph learning has attracted significant interest, especially graph contrastive learning. However, graph contrastive learning heavily relies on the choices of negative samples and the elaborate designs... 详细信息
来源: 评论
MGAE: Marginalized graph autoencoder for graph Clustering  17
MGAE: Marginalized Graph Autoencoder for Graph Clustering
收藏 引用
ACM Conference on Information and Knowledge Management (CIKM)
作者: Wang, Chun Pan, Shirui Long, Guodong Zhu, Xingquan Jiang, Jing Univ Technol Sydney Ctr Artificial Intelligence Sydney NSW 2007 Australia Florida Atlantic Univ Dept CEECS Boca Raton FL 33431 USA
graph clustering aims to discover community structures in networks, the task being fundamentally challenging mainly because the topology structure and the content of the graphs are difficult to represent for clusterin... 详细信息
来源: 评论
Multi-Scale Variational graph autoencoder for Link Prediction  22
Multi-Scale Variational Graph AutoEncoder for Link Predictio...
收藏 引用
15th ACM International Conference on Web Search and Data Mining (WSDM)
作者: Guo, Zhihao Wang, Feng Yao, Kaixuan Liang, Jiye Wang, Zhiqiang Shanxi Univ Sch Comp & Informat Technol Taiyuan Shanxi Peoples R China
Link prediction has become a significant research problem in deep learning, and the graph-based autoencoder model is one of the most important methods to solve it. The existing graph-based autoencoder models only lear... 详细信息
来源: 评论