咨询与建议

限定检索结果

文献类型

  • 77 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 82 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 8 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 26 篇 理学
    • 17 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 111 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 9 篇 deep learning
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 9 篇 graph convolutio...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 task analysis
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 network embeddin...
  • 3 篇 fault diagnosis
  • 3 篇 graph convolutio...
  • 3 篇 anomaly detectio...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 110 篇 英文
  • 1 篇 其他
检索条件"主题词=graph autoencoder"
111 条 记 录,以下是61-70 订阅
排序:
GLMAE: graph REPRESENTATION LEARNING METHOD COMBINING GENERATIVE LEARNING AND MASKING autoencoder  49
GLMAE: GRAPH REPRESENTATION LEARNING METHOD COMBINING GENERA...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xu, Yunfeng Zhao, Shaohui Fan, Hexun Wang, Jialin Hebei Univ Sci & Technol Shijiazhuang Hebei Peoples R China
graph representation learning is the foundation for various graph data mining tasks. In the real world, graph data not only contains complex adjacency relationships but also diverse structural information. To address ... 详细信息
来源: 评论
graph autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2024年 第3期28卷 1644-1655页
作者: Noman, Fuad Ting, Chee-Ming Kang, Hakmook Phan, Raphael C. -W. Ombao, Hernando Monash Univ Malaysia Sch Informat Technol Sunway 47500 Malaysia Vanderbilt Univ Med Ctr Dept Biostat Nashville TN 37232 USA King Abdullah Univ Sci & Technol Stat Program Thuwal 239556900 Saudi Arabia
Brain functional connectivity (FC) networks inferred from functional magnetic resonance imaging (fMRI) have shown altered or aberrant brain functional connectome in various neuropsychiatric disorders. Recent applicati... 详细信息
来源: 评论
Generative and contrastive graph representation learning with message passing
收藏 引用
NEURAL NETWORKS 2025年 185卷 107224页
作者: Tang, Ying Yang, Yining Sun, Guodao Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310000 Zhejiang Peoples R China
Self-supervised graph representation learning (SSGRL) has emerged as a promising approach for graph embeddings because it does not rely on manual labels. SSGRL methods are generally divided into generative and contras... 详细信息
来源: 评论
Adversarial relationship graph learning soft sensor via negative information exclusion
收藏 引用
JOURNAL OF PROCESS CONTROL 2025年 145卷
作者: Jia, Mingwei Yang, Chao Pan, Zhouxin Liu, Qiang Liu, Yi Zhejiang Univ Technol Inst Proc Equipment & Control Engn Hangzhou 310023 Peoples R China Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Liaoning Peoples R China
The development of soft sensors in process industries necessitates learning the dynamic variable relationships caused by physicochemical reactions, whilst avoiding noise interference that degrades prediction performan... 详细信息
来源: 评论
MM-LogVec: System Log Anomaly Detection Method Based on Multimodal Representation Learning
MM-LogVec: System Log Anomaly Detection Method Based on Mult...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Jingwen Zhang, Ru Liu, Jianyi Beijing Univ. of Posts & Telecom. Beijing China
Advanced persistent threats (APTs) pose significant risks to national infrastructure and corporate security. System logs record interactions between system entities, which are widely used for APT detection. However, t... 详细信息
来源: 评论
SHGAE: Social Hypergraph autoencoder for Friendship Inference  32nd
SHGAE: Social Hypergraph AutoEncoder for Friendship Inferenc...
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: Li, Yujie Chen, Yan Qi, Tianliang Tian, Feng Wu, Yaqiang Wang, Qianying Xi An Jiao Tong Univ Coll Comp Sci & Technol Xian Shaanxi Peoples R China Lenovo Res Beijing Peoples R China
Location-Based Social Networks (LBSNs) present a significant challenge for inferring social relationships from both social networks and user mobility. While traditional rule-based walk graph representation learning me... 详细信息
来源: 评论
Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations
收藏 引用
ARTIFICIAL INTELLIGENCE IN MEDICINE 2023年 145卷 102665-102665页
作者: Zhong, Yichen Shen, Cong Xi, Xiaoting Luo, Yuxun Ding, Pingjian Luo, Lingyun Univ South China Sch Comp Sci Hengyang 421001 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410083 Peoples R China Hunan Univ Sci & Technol Sch Comp Sci & Engn Xiangtan 411105 Peoples R China
The occurrence of many diseases is associated with miRNA abnormalities. Predicting potential drug-miRNA associations is of great importance for both disease treatment and new drug discovery. Most computation -based ap... 详细信息
来源: 评论
WDCIP:spatio-temporal AI-driven disease control intelligent platform for combating COVID-19 pandemic
收藏 引用
地球空间信息科学学报(英文版) 2024年 第6期27卷 中插16,2023-2047页
作者: Siqi Wang Xiaoxiao Zhao Jingyu Qiu Haofen Wang Chuang Tao College of Design and Innovation Tongji UniversityShanghaiChina Product Development Department Wayz AI Technology Company LimitedShanghaiChina
The outbreak and subsequent recurring waves of COVID-19 pose threats on the emergency management and people's daily life,while the large-scale spatio-temporal epidemiological data have sure come in handy in epidem... 详细信息
来源: 评论
MoRGH: movie recommender system using GNNs on heterogeneous graphs
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2024年 第12期66卷 7419-7435页
作者: Ziaee, Seyed Sina Rahmani, Hossein Nazari, Mohammad Iran Univ Sci & Technol Sch Comp Engn Tehran *** Iran Univ Calgary Dept Comp Sci Calgary T2N 1N4 AB Canada
Nowadays, with the advent of movies and TV shows and the competition between different movie streamer companies and movie databases to attract more users, movie recommenders have become a major prerequisite for custom... 详细信息
来源: 评论
Drug repositioning based on residual attention network and free multiscale adversarial training
收藏 引用
BMC BIOINFORMATICS 2024年 第1期25卷 1页
作者: Li, Guanghui Li, Shuwen Liang, Cheng Xiao, Qiu Luo, Jiawei East China Jiaotong Univ Sch Informat Engn Nanchang Peoples R China Shandong Normal Univ Sch Informat Sci & Engn Jinan Peoples R China Hunan Normal Univ Coll Informat Sci & Engn Changsha Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha Peoples R China
BackgroundConducting traditional wet experiments to guide drug development is an expensive, time-consuming and risky process. Analyzing drug function and repositioning plays a key role in identifying new therapeutic p... 详细信息
来源: 评论