咨询与建议

限定检索结果

文献类型

  • 77 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 82 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 8 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 生物工程
    • 2 篇 建筑学
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
  • 26 篇 理学
    • 17 篇 生物学
    • 6 篇 数学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 2 篇 地理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
  • 15 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 4 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学

主题

  • 111 篇 graph autoencode...
  • 12 篇 graph neural net...
  • 11 篇 graph neural net...
  • 9 篇 deep learning
  • 9 篇 graph clustering
  • 9 篇 graph representa...
  • 9 篇 graph convolutio...
  • 7 篇 link prediction
  • 6 篇 self-supervised ...
  • 5 篇 community detect...
  • 5 篇 data models
  • 4 篇 representation l...
  • 4 篇 graph attention ...
  • 4 篇 task analysis
  • 4 篇 contrastive lear...
  • 4 篇 graph embedding
  • 4 篇 network embeddin...
  • 3 篇 fault diagnosis
  • 3 篇 graph convolutio...
  • 3 篇 anomaly detectio...

机构

  • 4 篇 hunan univ coll ...
  • 3 篇 anhui univ sch a...
  • 3 篇 anhui univ sch c...
  • 3 篇 anhui univ sch i...
  • 2 篇 hefei comprehens...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 2 篇 shandong normal ...
  • 2 篇 east china jiaot...
  • 2 篇 tennessee techno...
  • 2 篇 xinjiang univ co...
  • 2 篇 hunan normal uni...
  • 2 篇 nankai univ coll...
  • 2 篇 qufu normal univ...
  • 2 篇 south china norm...
  • 1 篇 lebanese amer un...
  • 1 篇 east china univ ...
  • 1 篇 florida atlantic...
  • 1 篇 univ south china...
  • 1 篇 univ cambridge d...

作者

  • 4 篇 pan shirui
  • 4 篇 long guodong
  • 3 篇 ting chee-ming
  • 3 篇 ding zhuanlian
  • 3 篇 jiang jing
  • 3 篇 ombao hernando
  • 3 篇 phan raphael c. ...
  • 3 篇 sun dengdi
  • 3 篇 noman fuad
  • 2 篇 wang shudong
  • 2 篇 li dashuang
  • 2 篇 luo jiawei
  • 2 篇 wang juan
  • 2 篇 zhang yuanyuan
  • 2 篇 atat rachad
  • 2 篇 fu xiangzheng
  • 2 篇 hanachi refka
  • 2 篇 zheng chun-hou
  • 2 篇 davis katherine ...
  • 2 篇 guan renxiang

语言

  • 110 篇 英文
  • 1 篇 其他
检索条件"主题词=graph autoencoder"
111 条 记 录,以下是81-90 订阅
排序:
SCG-GFFE: A Self-Constructed graph fault feature extractor based on graph Auto-encoder algorithm for unlabeled single-variable vibration signals of harmonic reducer
收藏 引用
ADVANCED ENGINEERING INFORMATICS 2024年 第PartA期62卷
作者: Sun, Shilong Ding, Hao Zhao, Zida Xu, Wenfu Wang, Dong Harbin Inst Technol Sch Mech Engn & Automat Shenzhen 518055 Peoples R China Guangdong Key Lab Intelligent Morphing Mech & Adap Shenzhen Peoples R China Shanghai Jiao Tong Univ State Key Lab Mech Syst & Vibrat Shanghai 200240 Peoples R China Key Univ Lab Mech & Machine Theory & Intelligent U Shenzhen Peoples R China
As a pivotal component in robotic systems, harmonic reducer fault diagnosis plays a crucial role in safe and stable operation;however, the lack of labelled fault samples hampers its effectiveness. This study introduce... 详细信息
来源: 评论
High-Speed Adder Design Space Exploration via graph Neural Processes
收藏 引用
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2022年 第8期41卷 2657-2670页
作者: Geng, Hao Ma, Yuzhe Xu, Qi Miao, Jin Roy, Subhendu Yu, Bei Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Univ Sci & Technol China Sch Microelect Hefei 230052 Peoples R China Google Mountain View CA 94043 USA Cadence Design Syst Design & Sign Grp Machine Learning Grp San Jose CA 95134 USA
Adders are the primary components in the data-path logic of a microprocessor, and thus, adder design has been always a critical issue in the very large-scale integration (VLSI) industry. However, it is infeasible for ... 详细信息
来源: 评论
Core-GAE: Toward Generation of IoT Networks
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2022年 第12期9卷 9241-9248页
作者: Luo, Qi Yu, Dongxiao Zheng, Yanwei Sheng, Hao Cheng, Xiuzhen Shandong Univ Sch Comp Sci & Technol Qingdao 266237 Peoples R China Beihang Univ Sch Comp Sci & Engn State Key Lab Software Dev Environm Beijing 100191 Peoples R China
To realize simulation experiments in large-scale Internet of Things (IoT) networks, this work studies the utilization of deep graph generative models to generate IoT networks, which can provide an economic approach fa... 详细信息
来源: 评论
TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024年 第2期35卷 2003-2013页
作者: Wu, Zonghan Zheng, Da Pan, Shirui Gan, Quan Long, Guodong Karypis, George Univ Technol Sydney FEIT Ctr Artificial Intelligence Ultimo NSW 2007 Australia Amazon Seattle WA 98109 USA Monash Univ Dept Data Sci & AI Clayton Vic 3800 Australia Griffith Univ Sch Informat & Commun Technol Southport Qld 4222 Australia
This article aims to unify spatial dependency and temporal dependency in a non-Euclidean space while capturing the inner spatial-temporal dependencies for traffic data. For spatial-temporal attribute entities with top... 详细信息
来源: 评论
Learning graph Embedding With Adversarial Training Methods
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2020年 第6期50卷 2475-2487页
作者: Pan, Shirui Hu, Ruiqi Fung, Sai-fu Long, Guodong Jiang, Jing Zhang, Chengqi Monash Univ Fac Informat Technol Clayton Vic 3800 Australia Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Ultimo NSW 2007 Australia City Univ Hong Kong Dept Appl Social Sci Hong Kong Peoples R China
graph embedding aims to transfer a graph into vectors to facilitate subsequent graph-analytics tasks like link prediction and graph clustering. Most approaches on graph embedding focus on preserving the graph structur... 详细信息
来源: 评论
Generalized graph Neural Network-Based Detection of False Data Injection Attacks in Smart Grids
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2023年 第3期7卷 618-630页
作者: Takiddin, Abdulrahman Atat, Rachad Ismail, Muhammad Boyaci, Osman Davis, Katherine R. Serpedin, Erchin Texas A&M Univ Dept Elect & Comp Engn College Stn TX 77843 USA Texas A&M Univ Qatar Dept Elect & Comp Engn Doha Qatar Tennessee Technol Univ Dept Comp Sci Cookeville TN 38505 USA
data injection attacks (FDIAs) pose a significant threat to smart power grids. Recent efforts have focused on developing machine learning (ML)-based defense strategies against such attacks. However, existing strategie... 详细信息
来源: 评论
Deep Learning on graphs: A Survey
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2022年 第1期34卷 249-270页
作者: Zhang, Ziwei Cui, Peng Zhu, Wenwu Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because... 详细信息
来源: 评论
Multi-view graph representation learning for hyperspectral image classification with spectral-spatial graph neural networks
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2024年 第7期36卷 3737-3759页
作者: Hanachi, Refka Sellami, Akrem Farah, Imed Riadh Dalla Mura, Mauro Univ Manouba RIADI Lab ENSI Manouba 2010 Tunis Tunisia Univ Lille CNRS Cent Lille UMR 9189 CRIStAL F-59000 Lille France IMT Atlantique ITI Dept 655 Ave Technopole F-29280 Plouzane Paris France Univ Grenoble Alpes Inst Engn Univ Grenoble Alpes Grenoble INP CNRSGIPSA Lab F-38000 Grenoble France Inst Univ France IUF F-75231 Paris France
Hyperspectral image (HSI) classification benefits from effectively handling both spectral and spatial features. However, deep learning (DL) models, like graph convolutional networks (GCN), face challenges in computati... 详细信息
来源: 评论
Multi-channel Partial graph Integration Learning of Partial Multi-omics Data for Cancer Subtyping
收藏 引用
CURRENT BIOINFORMATICS 2023年 第8期18卷 680-691页
作者: Cao, Qing-Qing Zhao, Jian-ping Zheng, Chun-Hou Xinjiang Univ Coll Math & Syst Sci Urumqi Peoples R China Anhui Univ Sch Artificial Intelligence Hefei Peoples R China Xinjiang Univ Coll Math & Phys POB 830046 Urumqi Peoples R China Anhui Univ Coll Comp Sci & Technol POB 230039 Hefei Peoples R China
Background The appearance of cancer subtypes with different clinical significance fully reflects the high heterogeneity of cancer. At present, the method of multi-omics integration has become more and more mature. How... 详细信息
来源: 评论
Temporal network embedding using graph attention network
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2022年 第1期8卷 13-27页
作者: Mohan, Anuraj Pramod, K., V Cochin Univ Sci & Technol Dept Comp Applicat Artificial Intelligence Lab Cochin 682022 Kerala India Cochin Univ Sci & Technol Dept Comp Applicat Cochin 682022 Kerala India
graph convolutional network (GCN) has made remarkable progress in learning good representations from graph-structured data. The layer-wise propagation rule of conventional GCN is designed in such a way that the featur... 详细信息
来源: 评论