咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 hybrid programmi...
  • 1 篇 deep learning
  • 1 篇 graph-based exec...
  • 1 篇 software evoluti...
  • 1 篇 imperative progr...
  • 1 篇 empirical studie...

机构

  • 1 篇 oakland univ roc...
  • 1 篇 cuny grad ctr ny...
  • 1 篇 cuny hunter coll...

作者

  • 1 篇 khatchadourian r...
  • 1 篇 raja anita
  • 1 篇 bagherzadeh mehd...
  • 1 篇 velez tatiana ca...

语言

  • 1 篇 英文
检索条件"主题词=graph-based execution"
1 条 记 录,以下是1-10 订阅
排序:
Challenges in Migrating Imperative Deep Learning Programs to graph execution: An Empirical Study
Challenges in Migrating Imperative Deep Learning Programs to...
收藏 引用
19th International Conference on Mining Software Repositories (MSR)
作者: Velez, Tatiana Castro Khatchadourian, Raffi Bagherzadeh, Mehdi Raja, Anita CUNY Grad Ctr New York NY 10017 USA CUNY Hunter Coll New York NY 10021 USA Oakland Univ Rochester MI 48063 USA
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbo... 详细信息
来源: 评论