咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 38 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 90 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 67 篇 计算机科学与技术...
    • 31 篇 电气工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 11 篇 理学
    • 6 篇 数学
    • 3 篇 物理学
    • 2 篇 生物学
  • 11 篇 医学
    • 9 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 法学

主题

  • 90 篇 graph-based semi...
  • 7 篇 label propagatio...
  • 4 篇 semisupervised l...
  • 4 篇 feature extracti...
  • 4 篇 machine learning
  • 3 篇 fault diagnosis
  • 3 篇 spatio-temporal ...
  • 3 篇 instruction unde...
  • 3 篇 lexicon propagat...
  • 3 篇 human-robot inte...
  • 3 篇 semantic parsing
  • 3 篇 image classifica...
  • 3 篇 induction motors
  • 2 篇 support vector r...
  • 2 篇 stator current
  • 2 篇 transductive lea...
  • 2 篇 multiple-instanc...
  • 2 篇 greedy-gradient ...
  • 2 篇 soft label
  • 2 篇 lipschitz learni...

机构

  • 5 篇 univ basque coun...
  • 4 篇 basque fdn sci i...
  • 4 篇 ikerbasque basqu...
  • 3 篇 ajou univ dept a...
  • 3 篇 northwestern pol...
  • 3 篇 inria saclay sod...
  • 3 篇 huzhou teachers ...
  • 3 篇 univ saskatchewa...
  • 3 篇 mem univ newfoun...
  • 2 篇 univ penn inst b...
  • 2 篇 shaanxi normal u...
  • 2 篇 hubei univ techn...
  • 2 篇 univ sci & techn...
  • 2 篇 shanghai jiao to...
  • 2 篇 thammasat univ s...
  • 2 篇 zhejiang univ ni...
  • 2 篇 nanjing univ pos...
  • 1 篇 yangtze univ sch...
  • 1 篇 kyoto inst techn...
  • 1 篇 univ tokyo bunky...

作者

  • 5 篇 dornaika f.
  • 4 篇 nie feiping
  • 4 篇 shin hyunjung
  • 4 篇 li xuelong
  • 3 篇 wen shiting
  • 3 篇 zhu songhao
  • 3 篇 liu yuncai
  • 3 篇 dornaika fadi
  • 3 篇 liang xiaodong
  • 3 篇 tao jianwen
  • 3 篇 hu wenjun
  • 3 篇 kim myung jun
  • 2 篇 kumar n. v. nare...
  • 2 篇 yun jae-seung
  • 2 篇 marukatat sanpar...
  • 2 篇 lu zhiwu
  • 2 篇 nam yonghyun
  • 2 篇 zaman shafi md k...
  • 2 篇 zuo ling
  • 2 篇 yun taehwan

语言

  • 88 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=graph-based semi-supervised learning"
90 条 记 录,以下是1-10 订阅
排序:
Pseudo Contrastive learning for graph-based semi-supervised learning
收藏 引用
NEUROCOMPUTING 2025年 624卷
作者: Lu, Weigang Guan, Ziyu Zhao, Wei Yang, Yaming Lv, Yuanhai Xing, Lining Yu, Baosheng Tao, Dacheng Xidian Univ Sch Comp Sci & Technol Xian Peoples R China Northwest Univ Xian Univ Posts & Telecommun Sch Informat Sci & Technol Xian Peoples R China Xian Univ Posts & Telecommun Informat Network Ctr Xian Peoples R China Xidian Univ Sch Elect Engn Xian Peoples R China Univ Sydney Sydney Australia Nanyang Technol Univ Nanyang Singapore
Pseudo Labeling is a technique used to improve the performance of semi-supervised graph Neural Networks (GNNs) by generating additional pseudo-labels based on confident predictions. However, the quality of generated p... 详细信息
来源: 评论
graph-based semi-supervised learning with non-convex graph total variation regularization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartC期225卷
作者: Wen, Tiehong Chen, Zhong Zhang, Tao Zou, Jian Yangtze Univ Sch Informat & Math Jingzhou 434023 Hubei Peoples R China
graph total variation (GTV) is a widely employed regularization in graph-based semi-supervised learning (GSSL), which enforce the piece-wise smoothness of the label values concerning the underlying graph structure. Ho... 详细信息
来源: 评论
An Effective Induction Motor Fault Diagnosis Approach Using graph-based semi-supervised learning
收藏 引用
IEEE ACCESS 2021年 9卷 7471-7482页
作者: Zaman, Shafi Md Kawsar Liang, Xiaodong Mem Univ Newfoundland Dept Elect & Comp Engn St John NF A1B 3X5 Canada Univ Saskatchewan Dept Elect & Comp Engn Saskatoon SK S7N 5A9 Canada
Machine learning has paved its way into induction motors fault diagnosis area, where supervised learning and deep learning have been employed. However, both learning methods require a large amount of labeled data to t... 详细信息
来源: 评论
Noise-robust graph-based semi-supervised learning with dynamic shaving label propagation
收藏 引用
APPLIED SOFT COMPUTING 2023年 142卷
作者: Lee, Jiyoon Kim, Younghoon Kim, Seoung Bum Korea Univ Sch Ind Management Engn 145 Anam Ro Seoul 02841 South Korea Kyung Hee Univ Dept Ind & Management Syst Engn 1732 Deogyeong Daero Yongin 17104 Gyeonggi South Korea
graph-based semi-supervised classification is widely used because it effectively exploits the characteristics of unlabeled data. However, the existing methods have a drawback in that they do not account for the inhere... 详细信息
来源: 评论
FuzzyGSSL: An Improved graph-based semi-supervised learning Through Fuzzy Label Propagation  24
FuzzyGSSL: An Improved Graph-based Semi-Supervised Learning ...
收藏 引用
Proceedings of the 3rd International Conference on Computing Advancements
作者: Kaniz Fatema Tanni Tanjila Sarkar Promi M. Jamshed Alam Patwary International Islamic University Chittagong Chittagong Bangladesh International Islamic University Chittagong Chittagong Chittagong Bangladesh Chittagong University of Engineering & Technology Chittagong Bangladesh
来源: 评论
A simple graph-based semi-supervised learning approach for imbalanced classification
收藏 引用
PATTERN RECOGNITION 2021年 118卷 108026-108026页
作者: Deng, Jianjin Yu, Jin-Gang Univ Texas Arlington Dept Comp Sci & Engn 500 UTA Blvd Arlington TX 76010 USA South China Univ Technol Sch Automat Sci & Technol Guangzhou 510641 Peoples R China Pazhou Lab Guangzhou 510335 Peoples R China
graph-based semi-supervised learning (GSSL) methods aim to classify unlabeled data by learning the graph structure and labeled data jointly. In this work, we propose a simple GSSL approach, which can deal with various... 详细信息
来源: 评论
Aspect Term Extraction using graph-based semi-supervised learning
Aspect Term Extraction using Graph-based Semi-Supervised Lea...
收藏 引用
International Conference on Computational Intelligence and Data Science (ICCIDS)
作者: Ansari, Gunjan Saxena, Chandni Ahmad, Tanvir Doja, M. N. JSS Acad Tech Educ Sec 62 Noida Uttar Pradesh India Jamia Millia Islamia Dept Comp Engn New Delhi 25 India
Aspect based Sentiment Analysis is a major subarea of sentiment analysis. Many supervised and unsupervised approaches have been proposed in the past for detecting and analyzing the sentiment of aspect terms. In this p... 详细信息
来源: 评论
Aspect Term Extraction using graph-based semi-supervised learning
收藏 引用
Procedia Computer Science 2020年 167卷 2080-2090页
作者: Gunjan Ansari Chandni Saxena Tanvir Ahmad M.N. Doja J.S.S. Academy of Technical Education Sec-62 Noida Uttar Pradesh India Department of Computer Engineering Jamia Millia Islamia New Delhi-25 India
Aspect based Sentiment Analysis is a major subarea of sentiment analysis. Many supervised and unsupervised approaches have been proposed in the past for detecting and analyzing the sentiment of aspect terms. In this p... 详细信息
来源: 评论
Instance selection method for improving graph-based semi-supervised learning
收藏 引用
Frontiers of Computer Science 2018年 第4期12卷 725-735页
作者: Hai WANG Shao-Bo WANG Yu-Feng LI 1 National Key Laboratory for Novel Software Technology Nanjing University Nanjing 210023 China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing 210023 China
graph-based semi-supervised learning is an important semi-supervised learning paradigm. Although graphbased semi-supervised learning methods have been shown to be helpful in various situations, they may adversely affe... 详细信息
来源: 评论
Visual Texture Perception via graph-based semi-supervised learning  9
Visual Texture Perception via Graph-based Semi-supervised Le...
收藏 引用
9th International Conference on graphic and Image Processing (ICGIP)
作者: Zhang, Qin Dong, Junyu Zhong, Guoqiang Ocean Univ China Dept Comp & Technol Qingdao Peoples R China
Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptua... 详细信息
来源: 评论