咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 14 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 22 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 系统科学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 31 篇 graph-structured...
  • 6 篇 graph neural net...
  • 2 篇 graph convolutio...
  • 2 篇 keyword search
  • 2 篇 data mining
  • 2 篇 feature extracti...
  • 2 篇 substructure sim...
  • 2 篇 privacy-assured
  • 2 篇 privacy
  • 1 篇 alzheimer's dise...
  • 1 篇 graph neural net...
  • 1 篇 information syst...
  • 1 篇 matched signal d...
  • 1 篇 business process...
  • 1 篇 representation l...
  • 1 篇 fault diagnosis
  • 1 篇 clustering
  • 1 篇 hyperbolic space
  • 1 篇 selectivity esti...
  • 1 篇 graph query

机构

  • 2 篇 beijing univ pos...
  • 1 篇 tech univ wien i...
  • 1 篇 software compete...
  • 1 篇 ajou univ dept i...
  • 1 篇 chinese acad sci...
  • 1 篇 beihang univ sch...
  • 1 篇 univ macau dept ...
  • 1 篇 massachusetts ge...
  • 1 篇 free univ bozen ...
  • 1 篇 sci sorbonne uni...
  • 1 篇 natl univ singap...
  • 1 篇 natl univ singap...
  • 1 篇 univ munich muni...
  • 1 篇 univ technol syd...
  • 1 篇 bielefeld univ a...
  • 1 篇 southern univ sc...
  • 1 篇 bielefeld univ b...
  • 1 篇 tu wien austria
  • 1 篇 simon fraser uni...
  • 1 篇 puc chile santia...

作者

  • 2 篇 xiong gang
  • 2 篇 yang fangchun
  • 2 篇 ortiz magdalena
  • 2 篇 zhang yingguang
  • 2 篇 wang yulong
  • 2 篇 simkus mantas
  • 2 篇 chen weifeng
  • 2 篇 su sen
  • 1 篇 ni wei
  • 1 篇 廖雨果
  • 1 篇 xiao xiangqu
  • 1 篇 hao xiulan
  • 1 篇 van rest oskar
  • 1 篇 sanaullah
  • 1 篇 李国良
  • 1 篇 wong pak kin
  • 1 篇 li xin
  • 1 篇 zhang lei
  • 1 篇 reutter juan l.
  • 1 篇 kueng josef

语言

  • 29 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=graph-structured data"
31 条 记 录,以下是1-10 订阅
排序:
graph-structured data generation and analysis for anomaly detection in an automated manufacturing process
收藏 引用
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2024年 第10期38卷 5617-5625页
作者: Kim, Namki Gao, Xinpu Yang, Jeongsam UDMTEK Co Ltd X AI Team 256 Changryong Daero Suwon 16229 Gyeonggi Do South Korea Ajou Univ Dept Ind Engn 206 Worldcup Ro Suwon 16499 Gyeonggi Do South Korea
During automated manufacturing processes, multiple sensors are attached to facilities to collect and analyze analog data for detecting operational anomalies. However, owing to facility devices being interlinked by a c... 详细信息
来源: 评论
Managing Change in graph-structured data Using Description Logics
收藏 引用
ACM TRANSACTIONS ON COMPUTATIONAL LOGIC 2017年 第4期18卷 1–35页
作者: Ahmetaj, Shqiponja Calvanese, Diego Ortiz, Magdalena Simkus, Mantas Tech Univ Wien Inst Informat Syst 184 3 Favoritenstr 9-11 A-1040 Vienna Austria Free Univ Bozen Bolzano Fac Comp Sci Piazza Domenicani 3 I-39100 Bolzano Italy
In this article, we consider the setting of graph-structured data that evolves as a result of operations carried out by users or applications. We study different reasoning problems, which range from deciding whether a... 详细信息
来源: 评论
Preserving the Privacy of Latent Information for graph-structured data
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2023年 18卷 5041-5055页
作者: Shan, Baoling Yuan, Xin Ni, Wei Wang, Xin Liu, Ren Ping Dutkiewicz, Eryk Univ Technol Sydney Global Big Data Technol Ctr Ultimo NSW 2007 Australia CSIRO Data61 Marsfield NSW 2122 Australia Fudan Univ Dept Commun Sci & Engn Shanghai 200433 Peoples R China
Latent graph structure and stimulus of graph-structured data contain critical private information, such as brain disorders in functional magnetic resonance imaging data, and can be exploited to identify individuals. I... 详细信息
来源: 评论
Privacy-assured substructure similarity query over encrypted graph-structured data in cloud
收藏 引用
SECURITY AND COMMUNICATION NETWORKS 2014年 第11期7卷 1933-1944页
作者: Zhang, Yingguang Su, Sen Wang, Yulong Chen, Weifeng Yang, Fangchun Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing 100088 Peoples R China
In recent years, large amounts of graph-structured data have been outsourced to the commercial public cloud. It is a crucial requirement to enable substructure similarity query for effective data retrieval. However, f... 详细信息
来源: 评论
An Effective Keyword Search Method for graph-structured data Using Extended Answer Structure
An Effective Keyword Search Method for Graph-Structured Data...
收藏 引用
13th International Conference on Computational Science and Its Applications (ICCSA)
作者: Park, Chang-Sup Dongduk Womens Univ Seoul South Korea
This paper proposes an effective approach to ranked keyword search over graph-structured data which is getting much attraction in various applications. To provide more effective search results than the previous approa... 详细信息
来源: 评论
Privacy-Assured Similarity Query over graph-structured data in Mobile Cloud
Privacy-Assured Similarity Query over Graph-Structured Data ...
收藏 引用
33rd IEEE International Conference on Distributed Computing Systems (ICDCS)
作者: Zhang, Yingguang Su, Sen Chen, Weifeng Wang, Yulong Xu, Peng Yang, Fangchun Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing Peoples R China
In the emerging mobile cloud paradigm, more and more innovative social applications are provided. The data of these applications is usually represented by the graph structure. For effective data retrieval, it is a cru... 详细信息
来源: 评论
An efficient structural index for graph-structured data  08
An efficient structural index for graph-structured data
收藏 引用
7th IEEE/ACIS International Conference on Computer and Information Science in Conjunction with 2nd IEEE/ACIS International Workshop on e-Activity
作者: Fan, Yingjie Zhang, Chenghong Wang, Shuyun Hao, Xiulan Hu, Yunfa Fudan Univ Sch Management Shanghai 200433 Peoples R China Fudan Univ Dept Comp & Informat Technol Shanghai 200433 Peoples R China
To speed up queries over XML and semi-structured data, a number of structural indexes have been proposed. The structural index is usually a labeled directed graph defined by partitioning nodes in the XML data graph in... 详细信息
来源: 评论
Counterfactual Learning on graphs:A Survey
收藏 引用
Machine Intelligence Research 2025年 第1期22卷 17-59页
作者: Zhimeng Guo Zongyu Wu Teng Xiao Charu Aggarwal Hui Liu Suhang Wang College of Information Sciences and Technology Pennsylvania State UniversityUniversity Park 16802USA International Business Machines Corporation T.J.Watson Research Center New York 10598USA College of Engineering Michigan State UniversityEast Lansing 48824USA
graph-structured data are pervasive in the real-world such as social networks,molecular graphs and transaction *** neural networks(GNNs)have achieved great success in representation learning on graphs,facilitating var... 详细信息
来源: 评论
A Multiscale Pooling Attention-Based graph Attention Network for Remaining Useful Life Prediction
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025年 74卷
作者: Tang, Jiayin Miao, Yonghao Xia, Yu Zhou, Qiuyang Yi, Cai Southwest Jiaotong Univ Sch Math Dept Stat Chengdu 611756 Sichuan Peoples R China Beihang Univ Sch Reliabil & Syst Engn Beijing 100191 Peoples R China Southwest Jiaotong Univ State Key Lab Rail Transit Vehicle Syst Chengdu 610000 Peoples R China
Owing to the intricate spatial and temporal relationships inherent in data collected from multiple sensors, achieving precise predictions of remaining useful life (RUL) becomes a challenging task. Recently, deep learn... 详细信息
来源: 评论
GPNet: Simplifying graph neural networks via multi-channel geometric polynomials
收藏 引用
INFORMATION SCIENCES 2025年 694卷
作者: Liu, Xun Ng, Alex Hay-Man Lei, Fangyuan Zhang, Yikuan Li, Zhengming Guangdong Univ Technol Sch Informat & Engn Guangzhou Peoples R China Software Engn Inst Guangzhou Dept Elect Guangzhou Peoples R China Guangdong Univ Technol Sch Civil & Transportat Engn Guangzhou Peoples R China Guangdong Polytech Normal Univ Guangdong Prov Key Lab Intellectual Property & Big Guangzhou Peoples R China Guangdong Polytech Normal Univ Sch Cyber Secur Guangzhou Peoples R China
graph neural networks (GNNs) are a promising deep-learning approach for circumventing many real-world problems with graph-structured data. However, these models typically have a minimum of one of the following four fu... 详细信息
来源: 评论