咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 approximate prin...
  • 1 篇 approximation al...
  • 1 篇 pattern classifi...
  • 1 篇 sparse similarit...
  • 1 篇 sparse matrices
  • 1 篇 sparsification
  • 1 篇 pairwise similar...
  • 1 篇 grid-based clust...
  • 1 篇 grid computing
  • 1 篇 k-nearest neighb...
  • 1 篇 spectral method
  • 1 篇 vectors
  • 1 篇 data mining
  • 1 篇 sparse computati...
  • 1 篇 grid neighborhoo...
  • 1 篇 pattern clusteri...
  • 1 篇 snc
  • 1 篇 approximation me...
  • 1 篇 binary classific...
  • 1 篇 accuracy

机构

  • 1 篇 univ calif berke...

作者

  • 1 篇 hochbaum dorit s...
  • 1 篇 baumann philipp

语言

  • 1 篇 英文
检索条件"主题词=grid-based clustering algorithms"
1 条 记 录,以下是1-10 订阅
排序:
Sparse computation for large-scale data mining  2
Sparse computation for large-scale data mining
收藏 引用
IEEE International Conference on Big Data
作者: Hochbaum, Dorit S. Baumann, Philipp Univ Calif Berkeley Etcheverry Hall Berkeley CA 94720 USA
Several leading data mining and clustering algorithms rely on inputs in the form of pairwise similarities. Yet, since the number of potential pairwise similarities grows quadratically in the size of the data set, it i... 详细信息
来源: 评论