咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 higher-order gra...
  • 1 篇 higher-order alg...
  • 1 篇 least-mean kurto...
  • 1 篇 computational co...
  • 1 篇 intensely noisy ...
  • 1 篇 least-mean-squar...
  • 1 篇 stochastic gradi...
  • 1 篇 filtering theory
  • 1 篇 mean-square-erro...
  • 1 篇 noise distributi...
  • 1 篇 covariance matri...
  • 1 篇 gradient methods
  • 1 篇 low signal-to-no...
  • 1 篇 adaptive filters
  • 1 篇 lms algorithm ou...
  • 1 篇 higher-order sta...
  • 1 篇 lmk algorithms
  • 1 篇 adaptive algorit...
  • 1 篇 higher order sta...
  • 1 篇 higher-order ada...

机构

  • 1 篇 hamedan univ tec...

作者

  • 1 篇 alipoor ghasem
  • 1 篇 eghbal meysam ka...

语言

  • 1 篇 英文
检索条件"主题词=higher-order adaptation algorithm"
1 条 记 录,以下是1-10 订阅
排序:
LMSK: a robust higher-order gradient-based adaptive algorithm
收藏 引用
IET SIGNAL PROCESSING 2019年 第5期13卷 506-515页
作者: Eghbal, Meysam Kazemi Alipoor, Ghasem Hamedan Univ Technol Elect Engn Dept Shahid Fahmideh Blvd Hamadan Iran
It has been shown that, in intensely noisy environments, adaptive algorithms based on higher-order statistics can enjoy better performance, as compared with the well known second-order least-mean-square (LMS) algorith... 详细信息
来源: 评论