The discretestatetransitionalgorithm (DSTA) has been wildly applied to deal with combinatorial optimization problems. However, its low convergence accuracy limits its application in large-scale optimization problem...
详细信息
The discretestatetransitionalgorithm (DSTA) has been wildly applied to deal with combinatorial optimization problems. However, its low convergence accuracy limits its application in large-scale optimization problems. Aiming at the convergence performance and search intensity of the algorithm, a hybrid discrete state transition algorithm (HDSTA) is proposed in this work by introducing tabu search and elite solution set. Firstly, a searching mechanism with the integration of DSTA and tabu search (TS) is established, which allows moving to adjacent solutions at an increased cost to escape from the local optimum. Specifically, a tabu list as adaptive memory is adopted to avoid the loop when deviating from local optima. Secondly, an elite solution set is introduced to integrate the information of the previous optimal solution and the global optimal solution, and the search strategy is modified to expand the range and diversity of candidate solutions. Finally, the proposed HDSTA is verified according to the real data on two well-known optimization problems (staff assignment problem and traveling salesman problem) and the real data of an industrial case. The experimental results show the effectiveness of the proposed algorithm in large-scale optimization problems.
In modern industrial warehouses, heterogeneous and flexible fleets of automated guided vehicles (AGVs) are widely used to improve transport efficiency. However, as their scale and limit of battery capacity increase, t...
详细信息
In modern industrial warehouses, heterogeneous and flexible fleets of automated guided vehicles (AGVs) are widely used to improve transport efficiency. However, as their scale and limit of battery capacity increase, the complexity of dynamic scheduling also increases dramatically. The problem is to assign tasks and determine detailed paths to AGVs to keep the multi-AGV system running efficiently and sustainedly. In this context, a mixed-integer linear programming (MILP) model is formulated. A hierarchical planning method is used, which decomposes the integrated problem into two levels: the upper-level task-assignment problem and the lower-level path-planning problem. A hybrid discrete state transition algorithm (HDSTA) based on an elite solution set and the Tabu List method is proposed to solve the dynamic scheduling problem to minimize the sum of the costs of requests and the tardiness costs of conflicts for the overall system. The efficacy of our method is investigated by computational experiments using real-world data.
暂无评论