咨询与建议

限定检索结果

文献类型

  • 9 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 6 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
  • 6 篇 理学
    • 3 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 14 篇 hyper-parameter ...
  • 3 篇 sparsity
  • 2 篇 compressed sensi...
  • 2 篇 sure
  • 2 篇 cramer-rao bound...
  • 2 篇 frame representa...
  • 2 篇 bayesian estimat...
  • 2 篇 gaussian process
  • 2 篇 wavelets
  • 2 篇 mean squared err...
  • 2 篇 sparse bayesian ...
  • 2 篇 mcmc
  • 1 篇 multiple kernel
  • 1 篇 image fusion
  • 1 篇 data regularizat...
  • 1 篇 uncertainty quan...
  • 1 篇 frames
  • 1 篇 cokriging
  • 1 篇 functional minim...
  • 1 篇 kalman filter an...

机构

  • 2 篇 chinese univ hon...
  • 2 篇 chinese univ hon...
  • 1 篇 cea saclay i2bm ...
  • 1 篇 beijing inst tec...
  • 1 篇 universite paris...
  • 1 篇 ecole super comm...
  • 1 篇 univ paris est i...
  • 1 篇 cea/dsv/i2bm/neu...
  • 1 篇 beijing electrom...
  • 1 篇 univ tokyo chiba...
  • 1 篇 univ toulouse ir...
  • 1 篇 university of to...
  • 1 篇 tech univ denmar...
  • 1 篇 observ paris les...
  • 1 篇 univ genoa dept ...
  • 1 篇 univ calif san d...
  • 1 篇 kyoto univ kyoto...
  • 1 篇 mauna kea techno...
  • 1 篇 dept. of electri...
  • 1 篇 riken brain sci ...

作者

  • 2 篇 yin feng
  • 2 篇 chen tianshi
  • 1 篇 zhong renxin
  • 1 篇 chaari lotfi
  • 1 篇 yamaoka seiji
  • 1 篇 jean-christophe ...
  • 1 篇 pal piya
  • 1 篇 philippe ciuciu
  • 1 篇 sorrentino alber...
  • 1 篇 omori toshiaki
  • 1 篇 mu biqiang
  • 1 篇 alhenc-gelas c.
  • 1 篇 ota keisuke
  • 1 篇 koochakzadeh ali
  • 1 篇 chen shishi
  • 1 篇 andersen martin ...
  • 1 篇 viani alessandro
  • 1 篇 aonishi toru
  • 1 篇 johansen adam m.
  • 1 篇 omae akiharu

语言

  • 14 篇 英文
检索条件"主题词=hyper-parameter estimation"
14 条 记 录,以下是1-10 订阅
排序:
A hyper-parameter estimation Algorithm in Bayesian System Identification Using OBFs-based Kernels
A Hyper-parameter Estimation Algorithm in Bayesian System Id...
收藏 引用
20th World Congress of the International-Federation-of-Automatic-Control (IFAC)
作者: Kondo, Takaaki Yamaoka, Seiji Ohta, Yoshito Kyoto Univ Kyoto 6068501 Japan
This paper proposes a hyper-parameter estimation algorithm for the regularized least squares problem in the empirical Bayesian approach arising from FIR model identification using OBFs (orthonormal basis functions)-ba... 详细信息
来源: 评论
Cost free hyper-parameter selection/averaging for Bayesian inverse problems with vanilla and Rao-Blackwellized SMC samplers
收藏 引用
STATISTICS AND COMPUTING 2023年 第6期33卷 1-15页
作者: Viani, Alessandro Johansen, Adam M. Sorrentino, Alberto Univ Genoa Dipartimento Matemat I-16146 Genoa Italy Univ Warwick Dept Stat Coventry CV4 7AL England
In Bayesian inverse problems, one aims at characterizing the posterior distribution of a set of unknowns, given indirect measurements. For non-linear/non-Gaussian problems, analytic solutions are seldom available: Seq... 详细信息
来源: 评论
Approximate Empirical Bayes estimation of the Regularization parameter in l1 Trend Filtering
Approximate Empirical Bayes Estimation of the Regularization...
收藏 引用
IEEE International Symposium on Information Theory (ISIT)
作者: Omae, Akiharu Watanabe, Kazuho Toyohashi Univ Technol Dept Comp Sci & Engn 1-1 HibarigaokaTempaku Cho Toyohashi Aichi 4418580 Japan
Trend filtering is often used in economics and other fields. l(1) trend filtering was proposed as a derivative of Hodrick-Prescott filtering based on the sparsity in the changes of trends. Although it has a regulariza... 详细信息
来源: 评论
Recursive Implementation of Gaussian Process Regression for Spatial-Temporal Data Modeling  11
Recursive Implementation of Gaussian Process Regression for ...
收藏 引用
11th IEEE International Conference on Wireless Communications and Signal Processing (WCSP)
作者: Kuang, Ye Chen, Tianshi Yin, Feng Zhong, Renxin Chinese Univ Hong Kong Sch Sci & Engn Shenzhen Guangdong Peoples R China Chinese Univ Hong Kong Shenzhen Res Inst Big Data Shenzhen Guangdong Peoples R China Sun Yat Sen Univ Sch Intelligent Syst Engn Guangzhou Guangdong Peoples R China
In this paper, we consider the spatial-temporal data modeling problem with large number of time instants and moderate number of locations. The problem is formulated as a function estimation problem and then handled by... 详细信息
来源: 评论
Sequential optimization using multi-level cokriging and extended expected improvement criterion
收藏 引用
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 2018年 第3期58卷 1155-1173页
作者: Liu, Yixin Chen, Shishi Wang, Fenggang Xiong, Fenfen Beijing Inst Technol Sch Aerosp Engn Beijing 100081 Peoples R China Minist Educ Key Lab Dynam & Control Flight Vehicle Beijing 100081 Peoples R China Beijing Electromech Engn Inst Beijing 100074 Peoples R China
To reduce the computational cost of metamodel based design optimization that directly relies on the computationally expensive simulation, the multi-fidelity cokriging method has gained increasing attention by fusing d... 详细信息
来源: 评论
Multiple Kernel Based Regularized System Identification with SURE hyper-parameter Estimator
Multiple Kernel Based Regularized System Identification with...
收藏 引用
18th IFAC Symposium on System Identification (SYSID)
作者: Hong, Shiying Mu, Biqiang Yin, Feng Andersen, Martin S. Chen, Tianshi Chinese Univ Hong Kong Sch Sci & Engn Shenzhen Peoples R China Chinese Univ Hong Kong Shenzhen Res Inst Big Data Shenzhen Peoples R China Linkoping Univ Dept Elect Engn Linkoping Sweden Tech Univ Denmark Dept Appl Math & Comp Sci Copenhagen Denmark
In this work, we study the multiple kernel based regularized system identification with the hyper-parameter estimated by using the Stein's unbiased risk estimators (SURE). To approach the problem, a QR factorizati... 详细信息
来源: 评论
ON SATURATION OF THE CRAMER RAO BOUND FOR SPARSE BAYESIAN LEARNING
ON SATURATION OF THE CRAMER RAO BOUND FOR SPARSE BAYESIAN LE...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Koochakzadeh, Ali Pal, Piya Univ Calif San Diego Dept Elect & Comp Engn San Diego CA 92103 USA
This paper analyzes the Cramer-Rao Bound associate? with the estimation of certain sparse hyper-parameters 10 the Sparse Bayesian Learning (SBL) framework, that crucially control the sparsity of the desired signal. Th... 详细信息
来源: 评论
On saturation of the Cramer Rao Bound for Sparse Bayesian Learning
On saturation of the Cramer Rao Bound for Sparse Bayesian Le...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Ali Koochakzadeh Piya Pal Dept. of Electrical and Computer Engineering University of California San Diego USA
This paper analyzes the Cramer-Rao Bound associated with the estimation of certain sparse hyper-parameters in the Sparse Bayesian Learning (SBL) framework, that crucially control the sparsity of the desired signal. Th... 详细信息
来源: 评论
Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2013年 66卷 55-69页
作者: Bachoc, Francois CEA Saclay DEN DM2S STMFLGLS F-91191 Gif Sur Yvette France Univ Paris 07 Lab Probabilites & Modeles Aleatoires F-75205 Paris 13 France
The Maximum Likelihood (ML) and Cross Validation (CV) methods for estimating covariance hyper-parameters are compared, in the context of Kriging with a misspecified covariance structure. A two-step approach is used. F... 详细信息
来源: 评论
A HIERARCHICAL BAYESIAN MODEL FOR FRAME REPRESENTATION
A HIERARCHICAL BAYESIAN MODEL FOR FRAME REPRESENTATION
收藏 引用
2010 IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Chaari, Lotfi Pesquet, Jean-Christophe Tourneret, Jean-Yves Ciuciu, Philippe Benazza-Benyahia, Amel Univ Paris Est IGM F-77454 Marne La Vallee France Univ Toulouse IRIT ENSEEIHT TSA F-31071 Toulouse France CEA Saclay I2BM DSV F-91191 Gif Sur Yvette France Ecole Super Commun Tunis Cite Technol Commun URISA Tunis 2083 Tunisia
In many signal processing problems, it may be fruitful to represent the signal under study in a redundant linear decomposition called a frame. If a probabilistic approach is adopted, it becomes then necessary to estim... 详细信息
来源: 评论