咨询与建议

限定检索结果

文献类型

  • 122 篇 期刊文献
  • 67 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 190 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 177 篇 工学
    • 129 篇 计算机科学与技术...
    • 54 篇 电气工程
    • 23 篇 信息与通信工程
    • 19 篇 软件工程
    • 17 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 石油与天然气工程
    • 8 篇 动力工程及工程热...
    • 7 篇 环境科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
  • 36 篇 理学
    • 10 篇 数学
    • 9 篇 物理学
    • 8 篇 生物学
    • 6 篇 地球物理学
    • 4 篇 化学
    • 2 篇 统计学(可授理学、...
  • 28 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 18 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 190 篇 hyper-parameter ...
  • 30 篇 deep learning
  • 30 篇 machine learning
  • 19 篇 bayesian optimiz...
  • 10 篇 optimization
  • 9 篇 genetic algorith...
  • 8 篇 feature extracti...
  • 7 篇 feature selectio...
  • 7 篇 training
  • 6 篇 grid search
  • 6 篇 federated learni...
  • 6 篇 data models
  • 6 篇 convolutional ne...
  • 5 篇 random search
  • 5 篇 transfer learnin...
  • 5 篇 meta-learning
  • 5 篇 convolutional ne...
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...
  • 4 篇 neural architect...

机构

  • 3 篇 zhejiang univ te...
  • 2 篇 univ birmingham ...
  • 2 篇 beijing univ pos...
  • 2 篇 chungbuk natl un...
  • 2 篇 dalian univ tech...
  • 2 篇 chinese univ hon...
  • 2 篇 beijing univ pos...
  • 2 篇 carnegie mellon ...
  • 2 篇 jeju natl univ b...
  • 2 篇 univ victoria de...
  • 2 篇 univ british col...
  • 1 篇 department of el...
  • 1 篇 nanjing univ pos...
  • 1 篇 univ sci & techn...
  • 1 篇 univ austral sed...
  • 1 篇 amrita vishwa vi...
  • 1 篇 deakin univ sch ...
  • 1 篇 asia univ inst i...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 univ kebangsaan ...

作者

  • 4 篇 yin feng
  • 4 篇 jiao licheng
  • 4 篇 li yangyang
  • 3 篇 kundroo majid
  • 3 篇 chandrashekaran ...
  • 3 篇 yedida rahul
  • 3 篇 lu gao
  • 3 篇 hoos holger h.
  • 3 篇 kim taehong
  • 3 篇 liu guangyuan
  • 3 篇 menzies tim
  • 3 篇 mu pan
  • 2 篇 zeng shangzhi
  • 2 篇 akay bahriye
  • 2 篇 wang ran
  • 2 篇 jun zhang
  • 2 篇 bai cong
  • 2 篇 kus zeki
  • 2 篇 li yuqi
  • 2 篇 vukovic maja

语言

  • 179 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"主题词=hyper-parameter optimization"
190 条 记 录,以下是1-10 订阅
排序:
Rethinking density ratio estimation based hyper-parameter optimization
收藏 引用
NEURAL NETWORKS 2025年 182卷 106917页
作者: Fan, Zi-En Lian, Feng Li, Xin-Ran Xi An Jiao Tong Univ Sch Automat Sci & Technol 28 West Xianning Rd Xian 710049 Shaanxi Peoples R China
hyper-parameter optimization (HPO) aims to improve the performance of machine learning algorithms by identifying appropriate hyper-parameters. By converting the computation of expected improvement into density-ratio e... 详细信息
来源: 评论
Is hyper-parameter optimization Different for Software Analytics?
收藏 引用
IEEE Transactions on Software Engineering 2025年
作者: Yedida, Rahul Menzies, Tim The Department of Computer Science North Carolina State University Raleigh United States
Yes. SE data can have "smoother" boundaries between classes (compared to traditional AI data sets). To be more precise, the magnitude of the second derivative of the loss function found in SE data is typical... 详细信息
来源: 评论
hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library
收藏 引用
Chinese Journal of Chemical Engineering 2022年 第12期52卷 115-125页
作者: Jun Zhang Qin Wang Weifeng Shen School of Chemistry and Chemical Engineering Chongqing UniversityChongqing 401331China School of Chemistry and Chemical Engineering Chongqing University of Science&TechnologyChongqing 401331China Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing 400044China
Due to outstanding performance in cheminformatics,machine learning algorithms have been increasingly used to mine molecular properties and biomedical big *** performance of machine learning models is known to critical... 详细信息
来源: 评论
hyper-parameter optimization of Classifiers, Using an Artificial Immune Network and Its Application to Software Bug Prediction
收藏 引用
IEEE ACCESS 2020年 8卷 20954-20964页
作者: Khan, Faiza Kanwal, Summrina Alamri, Sultan Mumtaz, Bushra Riphah Int Univ Fac Comp Islamabad 45211 Pakistan Saudi Elect Univ Dept Comp & Informat Riyadh 11673 Saudi Arabia
Software testing is an important task in software development activities, and it requires most of the resources, namely, time, cost and effort. To minimize this fatigue, software bug prediction (SBP) models are applie... 详细信息
来源: 评论
hyper-parameter optimization of Stacked Asymmetric Auto-Encoders for Automatic Personality Traits Perception
收藏 引用
SENSORS 2022年 第16期22卷 6206页
作者: Zaferani, Effat Jalaeian Teshnehlab, Mohammad Khodadadian, Amirreza Heitzinger, Clemens Vali, Mansour Noii, Nima Wick, Thomas KN Toosi Univ Technol Elect & Comp Engn Fac Tehran *** Iran Leibniz Univ Hannover Inst Appl Math D-30167 Hannover Germany TU Wien Inst Anal & Sci Comp A-1040 Vienna Austria TU Wien Ctr Artificial Intelligence & Machine Learning CA A-1040 Vienna Austria Leibniz Univ Hannover Inst Continuum Mech D-30823 Hannover Germany
In this work, a method for automatic hyper-parameter tuning of the stacked asymmetric auto-encoder is proposed. In previous work, the deep learning ability to extract personality perception from speech was shown, but ... 详细信息
来源: 评论
hyper-parameter optimization-based multi-source fusion for remote sensing inversion of non-photosensitive water quality parameters
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2024年 第18期45卷 6838-6859页
作者: Yuan, Yuhao Lin, Zhiping Jiang, Xinhao Fan, Zhongmou Fujian Agr & Forestry Univ Sch Transportat & Civil Engn Comprehens Bldg 50763 Xiyuangong Rd Fuzhou 350100 Fujian Peoples R China
The constraints of spatiotemporal heterogeneity and spatial resolution constitute two crucial challenges in the establishment of remote sensing inversion models. Spatiotemporal heterogeneity gives rise to an inadequat... 详细信息
来源: 评论
hyper-parameter optimization in classification: To-do or not-to-do
收藏 引用
PATTERN RECOGNITION 2020年 103卷 107245-107245页
作者: Ngoc Tran Schneider, Jean-Guy Weber, Ingo Qin, A. K. Swinburne Univ Technol Dept Comp Sci & Software Engn Hawthorn Vic 3122 Australia Deakin Univ Sch Informat Technol Geelong Vic Australia CSIRO Data61 Eveleigh NSW 2015 Australia Tech Univ Berlin Chair Software & Business Engn Berlin 10587 Germany Swinburne Univ Technol Hawthorn Vic Australia
hyper-parameter optimization is a process to find suitable hyper-parameters for predictive models. It typically incurs highly demanding computational costs due to the need of the time-consuming model training process ... 详细信息
来源: 评论
hyper-parameter optimization Using MARS Surrogate for Machine-Learning Algorithms
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2020年 第3期4卷 287-297页
作者: Li, Yangyang Liu, Guangyuan Lu, Gao Jiao, Licheng Marturi, Naresh Shang, Ronghua Xidian Univ Int Res Ctr Intelligent Percept & Computat Sch Artificial IntelligenceJoint Int Res Lab Int Minist EducKey Lab Intelligent Percept & Image U Xian 710071 Peoples R China Univ Birmingham Extreme Robot Lab Edgbaston B15 2TT England
Automatically searching for optimal hyper parameters is of crucial importance for applying machine learning algorithms in practice. However, there are concerns regarding the tradeoff between efficiency and effectivene... 详细信息
来源: 评论
hyper-parameter optimization by Using the Genetic Algorithm for Upper Limb Activities Recognition Based on Neural Networks
收藏 引用
IEEE SENSORS JOURNAL 2021年 第2期21卷 1877-1884页
作者: Zhang, Junjie Sun, Guangmin Sun, Yuge Dou, Huijing Bilal, Anas Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Univ Manchester Sch Elect & Elect Engn Manchester M13 9PL Lancs England
A method of Upper Limb Activities Recognition (UPLA) based on Neural Networks is presented. The accuracy of activity recognition will be influenced by the size of sliding window, the overlapping of adjacent sequences ... 详细信息
来源: 评论
hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection
收藏 引用
APPLIED INTELLIGENCE 2023年 第12期53卷 15603-15620页
作者: Karaman, Ahmet Karaboga, Dervis Pacal, Ishak Akay, Bahriye Basturk, Alper Nalbantoglu, Ufuk Coskun, Seymanur Sahin, Omur Acibadem Hosp Dept Gastroenterol Kayseri Turkey Erciyes Univ Engn Fac Dept Comp Engn Kayseri Turkey Erciyes Univ Artificial Intelligence & Big Data Applicat & Res Kayseri Turkey Igdir Univ Engn Fac Dept Comp Engn Igdir Turkey
Colorectal cancer (CRC) is one of the most common and malignant types of cancer worldwide. Colonoscopy, considered the gold standard for CRC screening, allows immediate removal of polyps, which are precursors to CRC. ... 详细信息
来源: 评论