咨询与建议

限定检索结果

文献类型

  • 122 篇 期刊文献
  • 67 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 190 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 177 篇 工学
    • 129 篇 计算机科学与技术...
    • 54 篇 电气工程
    • 23 篇 信息与通信工程
    • 19 篇 软件工程
    • 17 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 石油与天然气工程
    • 8 篇 动力工程及工程热...
    • 7 篇 环境科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
  • 36 篇 理学
    • 10 篇 数学
    • 9 篇 物理学
    • 8 篇 生物学
    • 6 篇 地球物理学
    • 4 篇 化学
    • 2 篇 统计学(可授理学、...
  • 28 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 18 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 190 篇 hyper-parameter ...
  • 30 篇 deep learning
  • 30 篇 machine learning
  • 19 篇 bayesian optimiz...
  • 10 篇 optimization
  • 9 篇 genetic algorith...
  • 8 篇 feature extracti...
  • 7 篇 feature selectio...
  • 7 篇 training
  • 6 篇 grid search
  • 6 篇 federated learni...
  • 6 篇 data models
  • 6 篇 convolutional ne...
  • 5 篇 random search
  • 5 篇 transfer learnin...
  • 5 篇 meta-learning
  • 5 篇 convolutional ne...
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...
  • 4 篇 neural architect...

机构

  • 3 篇 zhejiang univ te...
  • 2 篇 univ birmingham ...
  • 2 篇 beijing univ pos...
  • 2 篇 chungbuk natl un...
  • 2 篇 dalian univ tech...
  • 2 篇 chinese univ hon...
  • 2 篇 beijing univ pos...
  • 2 篇 carnegie mellon ...
  • 2 篇 jeju natl univ b...
  • 2 篇 univ victoria de...
  • 2 篇 univ british col...
  • 1 篇 department of el...
  • 1 篇 nanjing univ pos...
  • 1 篇 univ sci & techn...
  • 1 篇 univ austral sed...
  • 1 篇 amrita vishwa vi...
  • 1 篇 deakin univ sch ...
  • 1 篇 asia univ inst i...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 univ kebangsaan ...

作者

  • 4 篇 yin feng
  • 4 篇 jiao licheng
  • 4 篇 li yangyang
  • 3 篇 kundroo majid
  • 3 篇 chandrashekaran ...
  • 3 篇 yedida rahul
  • 3 篇 lu gao
  • 3 篇 hoos holger h.
  • 3 篇 kim taehong
  • 3 篇 liu guangyuan
  • 3 篇 menzies tim
  • 3 篇 mu pan
  • 2 篇 zeng shangzhi
  • 2 篇 akay bahriye
  • 2 篇 wang ran
  • 2 篇 jun zhang
  • 2 篇 bai cong
  • 2 篇 kus zeki
  • 2 篇 li yuqi
  • 2 篇 vukovic maja

语言

  • 179 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"主题词=hyper-parameter optimization"
190 条 记 录,以下是11-20 订阅
排序:
hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2017年 167卷 517-526页
作者: Chen, Gaige Chen, Jinglong Zi, Yanyang Miao, Huihui Xi An Jiao Tong Univ State Key Lab Mfg & Syst Engn Xian Shaanxi Peoples R China
Complex equipment deterioration refers to a nonlinear multistate deterioration process, where the deterioration curve may not follow a typical shape such as exponential or linear function. A general solution is presen... 详细信息
来源: 评论
hyper-parameter optimization of Multi-attention Recurrent Neural Network for Battery State-of-Charge Forecasting  19th
Hyper-parameter Optimization of Multi-attention Recurrent Ne...
收藏 引用
19th EPIA Conference on Artificial Intelligence (EPIA)
作者: Mashlakov, Aleksei Tikka, Ville Lensu, Lasse Romanenko, Aleksei Honkapuro, Samuli LUT Univ Yliopistonkatu 34 Lappeenranta 53850 Finland
In the past years, a rapid deployment of battery energy storage systems for diverse smart grid services has been seen in electric power systems. However, a cost-effective and multi-objective application of these servi... 详细信息
来源: 评论
hyper-parameter optimization for Latent Spaces  1
收藏 引用
21st Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Veloso, Bruno Caroprese, Luciano Konig, Matthias Teixeira, Sonia Manco, Giuseppe Hoos, Holger H. Gama, Joao Portucalense Univ Porto Portugal Leiden Univ Leiden Netherlands Univ Porto Porto Portugal Univ British Columbia Vancouver BC Canada ICAR CNR Arcavacata Di Rende Italy LIAAD INESC TEC Porto Portugal
We present an online optimization method for time-evolving data streams that can automatically adapt the hyper-parameters of an embedding model. More specifically, we employ the Nelder-Mead algorithm, which uses a set... 详细信息
来源: 评论
hyper-parameter optimization OF DEEP CONVOLUTIONAL NETWORKS FOR OBJECT RECOGNITION
HYPER-PARAMETER OPTIMIZATION OF DEEP CONVOLUTIONAL NETWORKS ...
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Talathi, Sachin S. Qualcomm Res Ctr 5775 Morehouse Dr San Diego CA 92121 USA
Recently sequential model based optimization (SMBO) has emerged as a promising hyper-parameter optimization strategy in machine learning. In this work, we investigate SMBO to identify architecture hyper-parameters of ... 详细信息
来源: 评论
hyper-parameter optimization FOR CONVOLUTIONAL NEURAL NETWORK COMMITTEES BASED ON EVOLUTIONARY ALGORITHMS  24
HYPER-PARAMETER OPTIMIZATION FOR CONVOLUTIONAL NEURAL NETWOR...
收藏 引用
24th IEEE International Conference on Image Processing (ICIP)
作者: Bochinski, Erik Senst, Tobias Sikora, Thomas Tech Univ Berlin Commun Syst Grp Berlin Germany
In a broad range of computer vision tasks, convolutional neural networks (CNNs) are one of the most prominent techniques due to their outstanding performance. Yet it is not trivial to find the best performing network ... 详细信息
来源: 评论
hyper-parameter optimization for Deep Learning by Surrogate-based Model with Weighted Distance Exploration
Hyper-Parameter Optimization for Deep Learning by Surrogate-...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Li, Zhenhua Shoemaker, Christine A. Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing Peoples R China Natl Univ Singapore Dept Ind Syst Engn Singapore Singapore
To improve deep neural net hyper-parameter optimization we develop a deterministic surrogate optimization algorithm as an efficient alternative to Bayesian optimization. A deterministic Radial Basis Function (RBF) sur... 详细信息
来源: 评论
hyper-parameter optimization OF DEEP LEARNING MODELS FOR COMPRESSOR AIR LEAK PREDICTION IN A GAS TURBINE
HYPER-PARAMETER OPTIMIZATION OF DEEP LEARNING MODELS FOR COM...
收藏 引用
ASME Power Conference (Power)
作者: Nogueras-Rivera, Diego I. Mojica-Vazquez, Lemuel Bonilla-Alvarado, Harry Bryden, Kenneth M. Tucker, David Traverso-Aviles, Luis M. Aponte-Roa, Diego A. Univ Ana G Mendez Elect & Comp Engn Dept San Juan PR 00926 USA Ames Lab Decis Sci Program Ames IA USA US DOE Natl Energy Technol Lab Washington DC USA Univ Ana G Mendez Mech Engn Dept San Juan PR USA
Gas turbine systems are widely used in the power industry because they provide continuous and reliable power to the electrical grid. One of the main concerns for implementing gas turbine systems is the maintenance cos... 详细信息
来源: 评论
hyper-parameter optimization for Improving the Performance of Grammatical Evolution
Hyper-Parameter Optimization for Improving the Performance o...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Wang, Hao Lou, Yitan Back, Thomas Leiden Univ LIACS Niels Bohrweg 1 Leiden Netherlands
State-of-the-art Grammatical Evolution systems such as PonyGE2 have a number of hyper-parameters that control the behavior of the internal evolutionary algorithm for evolving the representations of programs. In this p... 详细信息
来源: 评论
A new hyper-parameter optimization method for machine learning in fault classification
收藏 引用
APPLIED INTELLIGENCE 2023年 第11期53卷 14182-14200页
作者: Ye, Xingchen Gao, Liang Li, Xinyu Wen, Long Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol 1037 Luoyu Rd Wuhan 430074 Peoples R China China Univ Geosci Sch Mech Engn & Elect Informat 388 Lumo Rd Wuhan 430074 Peoples R China
Accurate bearing fault classification is essential for the safe and stable operation of rotating machinery. The success of Machine Learning (ML) in fault classification is mainly dependent on efficient features and th... 详细信息
来源: 评论
A lightweight intrusion detection system for internet of vehicles based on transfer learning and MobileNetV2 with hyper-parameter optimization
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第8期83卷 22347-22369页
作者: Wang, Yingqing Qin, Guihe Zou, Mi Liang, Yanhua Wang, Guofeng Wang, Kunpeng Feng, Yao Zhang, Zizhan Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Jilin Univ Publ Comp Educ & Res Ctr Changchun 130012 Peoples R China
With the rapid development of Internet of Vehicles (IoV) technology, Intelligent Connected Vehicles (ICVs) have richer vehicle information functions and applications. In recent years, as ICVs have become more complex ... 详细信息
来源: 评论