咨询与建议

限定检索结果

文献类型

  • 122 篇 期刊文献
  • 67 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 190 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 177 篇 工学
    • 129 篇 计算机科学与技术...
    • 54 篇 电气工程
    • 23 篇 信息与通信工程
    • 19 篇 软件工程
    • 17 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 石油与天然气工程
    • 8 篇 动力工程及工程热...
    • 7 篇 环境科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
  • 36 篇 理学
    • 10 篇 数学
    • 9 篇 物理学
    • 8 篇 生物学
    • 6 篇 地球物理学
    • 4 篇 化学
    • 2 篇 统计学(可授理学、...
  • 28 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 18 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 190 篇 hyper-parameter ...
  • 30 篇 deep learning
  • 30 篇 machine learning
  • 19 篇 bayesian optimiz...
  • 10 篇 optimization
  • 9 篇 genetic algorith...
  • 8 篇 feature extracti...
  • 7 篇 feature selectio...
  • 7 篇 training
  • 6 篇 grid search
  • 6 篇 federated learni...
  • 6 篇 data models
  • 6 篇 convolutional ne...
  • 5 篇 random search
  • 5 篇 transfer learnin...
  • 5 篇 meta-learning
  • 5 篇 convolutional ne...
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...
  • 4 篇 neural architect...

机构

  • 3 篇 zhejiang univ te...
  • 2 篇 univ birmingham ...
  • 2 篇 beijing univ pos...
  • 2 篇 chungbuk natl un...
  • 2 篇 dalian univ tech...
  • 2 篇 chinese univ hon...
  • 2 篇 beijing univ pos...
  • 2 篇 carnegie mellon ...
  • 2 篇 jeju natl univ b...
  • 2 篇 univ victoria de...
  • 2 篇 univ british col...
  • 1 篇 department of el...
  • 1 篇 nanjing univ pos...
  • 1 篇 univ sci & techn...
  • 1 篇 univ austral sed...
  • 1 篇 amrita vishwa vi...
  • 1 篇 deakin univ sch ...
  • 1 篇 asia univ inst i...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 univ kebangsaan ...

作者

  • 4 篇 yin feng
  • 4 篇 jiao licheng
  • 4 篇 li yangyang
  • 3 篇 kundroo majid
  • 3 篇 chandrashekaran ...
  • 3 篇 yedida rahul
  • 3 篇 lu gao
  • 3 篇 hoos holger h.
  • 3 篇 kim taehong
  • 3 篇 liu guangyuan
  • 3 篇 menzies tim
  • 3 篇 mu pan
  • 2 篇 zeng shangzhi
  • 2 篇 akay bahriye
  • 2 篇 wang ran
  • 2 篇 jun zhang
  • 2 篇 bai cong
  • 2 篇 kus zeki
  • 2 篇 li yuqi
  • 2 篇 vukovic maja

语言

  • 179 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"主题词=hyper-parameter optimization"
190 条 记 录,以下是41-50 订阅
排序:
hyper-parameter optimization OF DEEP CONVOLUTIONAL NETWORKS FOR OBJECT RECOGNITION
HYPER-PARAMETER OPTIMIZATION OF DEEP CONVOLUTIONAL NETWORKS ...
收藏 引用
IEEE International Conference on Image Processing
作者: Sachin S. Talathi Qualcomm Research Center
Recently sequential model based optimization (SMBO) has emerged as a promising hyper-parameter optimization strategy in machine learning. In this work, we investigate SMBO to identify architecture hyper-parameters of ... 详细信息
来源: 评论
Surrogate network-based sparseness hyper-parameter optimization for deep expression recognition
收藏 引用
PATTERN RECOGNITION 2021年 111卷 107701-107701页
作者: Xie, Weicheng Chen, Wenting Shen, Linlin Duan, Jinming Yang, Meng Shenzhen Univ Sch Comp Sci & Software Engn Shenzhen 518060 Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen Peoples R China Shenzhen Univ Guangdong Key Lab Intelligent Informat Proc Shenzhen Peoples R China Univ Birmingham Sch Comp Sci Birmingham W Midlands England Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Guangdong Peoples R China
For facial expression recognition, the sparseness constraints of the features or weights can improve the generalization ability of a deep network. However, the optimization of the hyper-parameters in fusing different ... 详细信息
来源: 评论
An efficient hyper-parameter optimization method for supervised learning
收藏 引用
APPLIED SOFT COMPUTING 2022年 126卷
作者: Shi, Ying Qi, Hui Qi, Xiaobo Mu, Xiaofang Taiyuan Normal Univ Sch Comp Sci & Technol Jinzhong 030619 Shanxi Peoples R China Shanxi Univ Sch Comp & Informat Technol Taiyuan 030006 Shanxi Peoples R China
Supervised learning is an important tool for data mining and knowledge discovery. The hyper -parameter in learning models usually has a significant impact on the generalization performance of supervised learning model... 详细信息
来源: 评论
Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
收藏 引用
PEERJ COMPUTER SCIENCE 2021年 7卷 e338页
作者: Gulcu, Ayla Kus, Zeki Fatih Sultan Mehmet Univ Comp Sci Istanbul Turkey
In this study, we model a CNN hyper-parameter optimization problem as a bi-criteria optimization problem, where the first objective being the classification accuracy and the second objective being the computational co... 详细信息
来源: 评论
Grid search with a weighted error function: hyper-parameter optimization for financial time series forecasting
收藏 引用
APPLIED SOFT COMPUTING 2024年 154卷
作者: Zhao, Yuan Zhang, Weiguo Liu, Xiufeng South China Univ Technol Sch Business Adm Guangzhou 510641 Peoples R China Guangzhou Financial Serv Innovat & Risk Management Guangzhou 510641 Peoples R China Shenzhen Univ Coll Management Shenzhen 518060 Peoples R China Tech Univ Denmark Dept Technol Management & Econ DK-2800 Lyngby Denmark
Financial time series forecasting is a difficult task due to the complexity and volatility of financial markets. Machine learning models have been applied to tackle this task, but finding their optimal hyper -paramete... 详细信息
来源: 评论
Incremental-based YoloV3 model with hyper-parameter optimization for product image classification in E-commerce sector
收藏 引用
APPLIED SOFT COMPUTING 2024年 165卷
作者: Dutta, Munmi Ganguly, Amrita Assam Engn Coll Dept Elect Engn Gauhati 781013 Assam India
Over the past few years, the E-commerce industry has grown tremendously for selling products to consumers. Here, the consumer can easily purchase the products from their residing seats and gets the products at the doo... 详细信息
来源: 评论
Application of a Stochastic Schemata Exploiter for Multi-Objective hyper-parameter optimization of Machine Learning
收藏 引用
REVIEW OF SOCIONETWORK STRATEGIES 2023年 第2期17卷 179-213页
作者: Makino, Hiroya Kita, Eisuke Nagoya Univ Grad Sch Informat Nagoya Japan
The Stochastic Schemata Exploiter (SSE), one of the Evolutionary Algorithms, is designed to find the optimal solution of a function. SSE extracts common schemata from individual sets with high fitness and generates in... 详细信息
来源: 评论
Research about pruning hyper-parameter optimization method based on transfer learning in geographic information system
收藏 引用
ARABIAN JOURNAL OF GEOSCIENCES 2021年 第5期14卷 404-404页
作者: Zhang, Xiaohang Li, Yuqi Li, Zhengren Beijing Univ Posts & Telecommun Sch Modern Post Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Econ & Management Beijing 100876 Peoples R China
Recently, researchers have found that some automated optimization methods and techniques can speed up the whole search process and can obtain better model hyper-parameter configurations. In this paper, the optimized i... 详细信息
来源: 评论
A Novel Method Based on Line-Segment Visualizations for hyper-parameter optimization in Deep Networks
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2018年 第3期32卷 1851002-1851002页
作者: Tang, Xue-song Ding, Yongsheng Hao, Kuangrong Donghua Univ Dept Informat Sci Shanghai 201620 Peoples R China
Recently, deep learning has been widely applied in various areas and achieved remarkable research findings. The major reason that makes the deep learning paradigm successful is that it can effectively learn a hierarch... 详细信息
来源: 评论
Federated learning with hyper-parameter optimization
收藏 引用
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES 2023年 第9期35卷
作者: Kundroo, Majid Kim, Taehong Chungbuk Natl Univ Sch Informat & Commun Engn Cheongju 28644 South Korea
Federated Learning is a new approach for distributed training of a deep learning model on data scattered across a large number of clients while ensuring data privacy. However, this approach faces certain limitations, ... 详细信息
来源: 评论