咨询与建议

限定检索结果

文献类型

  • 122 篇 期刊文献
  • 67 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 190 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 177 篇 工学
    • 129 篇 计算机科学与技术...
    • 54 篇 电气工程
    • 23 篇 信息与通信工程
    • 19 篇 软件工程
    • 17 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 石油与天然气工程
    • 8 篇 动力工程及工程热...
    • 7 篇 环境科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
  • 36 篇 理学
    • 10 篇 数学
    • 9 篇 物理学
    • 8 篇 生物学
    • 6 篇 地球物理学
    • 4 篇 化学
    • 2 篇 统计学(可授理学、...
  • 28 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 18 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 190 篇 hyper-parameter ...
  • 30 篇 deep learning
  • 30 篇 machine learning
  • 19 篇 bayesian optimiz...
  • 10 篇 optimization
  • 9 篇 genetic algorith...
  • 8 篇 feature extracti...
  • 7 篇 feature selectio...
  • 7 篇 training
  • 6 篇 grid search
  • 6 篇 federated learni...
  • 6 篇 data models
  • 6 篇 convolutional ne...
  • 5 篇 random search
  • 5 篇 transfer learnin...
  • 5 篇 meta-learning
  • 5 篇 convolutional ne...
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...
  • 4 篇 neural architect...

机构

  • 3 篇 zhejiang univ te...
  • 2 篇 univ birmingham ...
  • 2 篇 beijing univ pos...
  • 2 篇 chungbuk natl un...
  • 2 篇 dalian univ tech...
  • 2 篇 chinese univ hon...
  • 2 篇 beijing univ pos...
  • 2 篇 carnegie mellon ...
  • 2 篇 jeju natl univ b...
  • 2 篇 univ victoria de...
  • 2 篇 univ british col...
  • 1 篇 department of el...
  • 1 篇 nanjing univ pos...
  • 1 篇 univ sci & techn...
  • 1 篇 univ austral sed...
  • 1 篇 amrita vishwa vi...
  • 1 篇 deakin univ sch ...
  • 1 篇 asia univ inst i...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 univ kebangsaan ...

作者

  • 4 篇 yin feng
  • 4 篇 jiao licheng
  • 4 篇 li yangyang
  • 3 篇 kundroo majid
  • 3 篇 chandrashekaran ...
  • 3 篇 yedida rahul
  • 3 篇 lu gao
  • 3 篇 hoos holger h.
  • 3 篇 kim taehong
  • 3 篇 liu guangyuan
  • 3 篇 menzies tim
  • 3 篇 mu pan
  • 2 篇 zeng shangzhi
  • 2 篇 akay bahriye
  • 2 篇 wang ran
  • 2 篇 jun zhang
  • 2 篇 bai cong
  • 2 篇 kus zeki
  • 2 篇 li yuqi
  • 2 篇 vukovic maja

语言

  • 179 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"主题词=hyper-parameter optimization"
190 条 记 录,以下是71-80 订阅
排序:
Research on the Identification Method of Series Arc Fault Based on the Feature Sensitivity Analysis and the TVA Coefficient Optimized Random Forest
收藏 引用
IEEE TRANSACTIONS ON POWER DELIVERY 2024年 第2期39卷 751-762页
作者: Tong, Haixin Zeng, Xiangjun Yu, Kun Mu, Jingru Luo, Chen Liu, Baiyang Changsha Univ Sci & Technol State Key Lab Disaster Prevent & Reduct Power Grid Changsha 410114 Hunan Peoples R China Hunan Prov Key Lab Grids Operat & Control Multipower Sources Area Shaoyang 422000 Hunan Peoples R China
This paper aims to tackle the difficulties in identifying series arc faults with feature aliasing in low-voltage electricity scenarios. Supported by feature sensitivity analysis, a method for identifying low-voltage s... 详细信息
来源: 评论
Hybrid modeling of hetero-agglomeration processes: a framework for model selection and arrangement
收藏 引用
ENGINEERING WITH COMPUTERS 2024年 第1期40卷 583-604页
作者: Rhein, Frank Hibbe, Leonard Nirschl, Hermann Karlsruhe Inst Technol KIT Inst Mech Proc Engn & Mech Str Forum 8 D-76131 Karlsruhe Germany
Modeling of hetero-agglomeration processes is invaluable for a variety of applications in particle technology. Traditionally, population balance equations (PBE) are employed;however, calculation of kinetic rates is ch... 详细信息
来源: 评论
Physics-informed deep learning for melting heat transfer analysis with model-based transfer learning
收藏 引用
COMPUTERS & MATHEMATICS WITH APPLICATIONS 2023年 第1期143卷 303-317页
作者: Guo, Hongwei Zhuang, Xiaoying Alajlan, Naif Rabczuk, Timon Bauhaus Univ Weimar Inst Struct Mech Weimar Germany Leibniz Univ Hannover Inst Photon Chair Computat Sci & Simulat Technol Hannover Germany Tongji Univ Dept Geotech Engn Shanghai Peoples R China Tongji Univ Key Lab Geotech & Underground Engn Minist Educ Shanghai Peoples R China King Saud Univ Coll Comp & Informat Sci Comp Engn Dept Riyadh Saudi Arabia
We present an adaptive deep collocation method (DCM) based on physics-informed deep learning for the melting heat transfer analysis of a non-Newtonian (Sisko) fluid over a moving surface with nonlinear thermal radiati... 详细信息
来源: 评论
Least squares auto-tuning
收藏 引用
ENGINEERING optimization 2021年 第5期53卷 789-810页
作者: Barratt, Shane T. Boyd, Stephen P. Stanford Univ Dept Elect Engn Stanford CA 94305 USA
Least squares auto-tuning automatically finds hyper-parameters in least squares problems that minimize another (true) objective. The least squares tuning optimization problem is non-convex, so it cannot be solved effi... 详细信息
来源: 评论
Concurrent surrogate model selection (COSMOS): optimizing model type, kernel function, and hyper-parameters
收藏 引用
STRUCTURAL AND MULTIDISCIPLINARY optimization 2018年 第3期57卷 1093-1114页
作者: Mehmani, Ali Chowdhury, Souma Meinrenken, Christoph Messac, Achille Columbia Univ Data Sci Inst New York NY 10027 USA Columbia Univ Earth Inst New York NY 10027 USA SUNY Buffalo Dept Mech & Aerosp Engn Buffalo NY 14228 USA Howard Univ Coll Engn Architecture & Comp Sci Washington DC 20059 USA
This paper presents an automated surrogate model selection framework called the Concurrent Surrogate Model Selection or COSMOS. Unlike most existing techniques, COSMOS coherently operates at three levels, namely: 1) s... 详细信息
来源: 评论
Cyber-Attack Detection Using Principal Component Analysis and Noisy Clustering Algorithms: A Collaborative Machine Learning-Based Framework
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2022年 第6期13卷 4848-4861页
作者: Parizad, Ali Hatziadoniu, Constantine Southern Illinois Univ Dept Elect & Comp Engn Carbondale IL 62901 USA Virginia Tech Adv Res Inst ARI Arlington VA 22203 USA
This paper proposes a collaborative machine learning-based framework to detect cyber-attacks in a power system, leading to deviation in the state variable behavior. Based on the proposed architecture, three different ... 详细信息
来源: 评论
Multi-Objective Surrogate Modeling Through Transfer Learning for Telescopic Boom Forklift
收藏 引用
IEEE ACCESS 2023年 11卷 11629-11641页
作者: Lin, Jingliang Li, Haiyan Huang, Yunbao Liang, Junjie Zhou, Sheng Huang, Zeying Liang, Guiming Guangdong Ocean Univ Sch Mech Engn Zhanjiang 524088 Peoples R China Guangdong Univ Technol Coll Mech & Elect Engn Guangzhou 510006 Peoples R China
Simulation and optimization methods have been widely used in forklift design due to their cost-effectiveness. However, this type of method involves challenges such as the accuracy of the simulation model and the simul... 详细信息
来源: 评论
Better stopping through cross validation in an iterative ensemble smoother: A perspective from supervised machine learning
GEOENERGY SCIENCE AND ENGINEERING
收藏 引用
GEOENERGY SCIENCE AND ENGINEERING 2024年 243卷
作者: Luo, Xiaodong Ranazzi, Paulo Norwegian Res Ctr NORCE Nygardsgaten 112 N-5008 Bergen Norway Univ Sao Paulo Rua Reitoria 109Cidade Univ BR-05508030 Sao Paulo Brazil
Iterative ensemble smoothers (IES) are among the popular reservoir data assimilation (RDA) algorithms for reservoir characterization. The actual deployment of an IES algorithm requires implementing certain stopping cr... 详细信息
来源: 评论
On the analysis of hyper-parameter space for a genetic programming system with iterated F-Race
收藏 引用
SOFT COMPUTING 2020年 第19期24卷 14757-14770页
作者: Trujillo, Leonardo Alvarez Gonzalez, Ernesto Galvan, Edgar Tapia, Juan J. Ponsich, Antonin Tecnol Nacl Mexico IT Tijuana Tijuana BC Mexico Maynooth Univ Dept Comp Sci Maynooth Kildare Ireland Inst Politecn Nacl CITEDI Ave Inst Politecn Nacl 1310 Colonia Nueva Tijuana Tijuana 22435 BC Mexico UAM Azcapotzalco Univ Autonoma Metropolitana Ave San Pablo 180 Reynosa 02200 Cdmx Mexico
Evolutionary algorithms (EAs) have been with us for several decades and are highly popular given that they have proved competitive in the face of challenging problems' features such as deceptiveness, multiple loca... 详细信息
来源: 评论
Transformer-powered surrogates close the ICF simulation-experiment gap with extremely limited data
收藏 引用
MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2024年 第2期5卷
作者: Olson, Matthew L. Liu, Shusen Thiagarajan, Jayaraman J. Kustowski, Bogdan Wong, Weng-Keen Anirudh, Rushil Lawrence Livermore Natl Lab Livermore CA 94550 USA Oregon State Univ Portland OR USA
Recent advances in machine learning, specifically transformer architecture, have led to significant advancements in commercial domains. These powerful models have demonstrated superior capability to learn complex rela... 详细信息
来源: 评论