咨询与建议

限定检索结果

文献类型

  • 122 篇 期刊文献
  • 67 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 190 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 177 篇 工学
    • 129 篇 计算机科学与技术...
    • 54 篇 电气工程
    • 23 篇 信息与通信工程
    • 19 篇 软件工程
    • 17 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 石油与天然气工程
    • 8 篇 动力工程及工程热...
    • 7 篇 环境科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 生物医学工程(可授...
    • 5 篇 土木工程
    • 4 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
  • 36 篇 理学
    • 10 篇 数学
    • 9 篇 物理学
    • 8 篇 生物学
    • 6 篇 地球物理学
    • 4 篇 化学
    • 2 篇 统计学(可授理学、...
  • 28 篇 管理学
    • 24 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 18 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 190 篇 hyper-parameter ...
  • 30 篇 deep learning
  • 30 篇 machine learning
  • 19 篇 bayesian optimiz...
  • 10 篇 optimization
  • 9 篇 genetic algorith...
  • 8 篇 feature extracti...
  • 7 篇 feature selectio...
  • 7 篇 training
  • 6 篇 grid search
  • 6 篇 federated learni...
  • 6 篇 data models
  • 6 篇 convolutional ne...
  • 5 篇 random search
  • 5 篇 transfer learnin...
  • 5 篇 meta-learning
  • 5 篇 convolutional ne...
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...
  • 4 篇 neural architect...

机构

  • 3 篇 zhejiang univ te...
  • 2 篇 univ birmingham ...
  • 2 篇 beijing univ pos...
  • 2 篇 chungbuk natl un...
  • 2 篇 dalian univ tech...
  • 2 篇 chinese univ hon...
  • 2 篇 beijing univ pos...
  • 2 篇 carnegie mellon ...
  • 2 篇 jeju natl univ b...
  • 2 篇 univ victoria de...
  • 2 篇 univ british col...
  • 1 篇 department of el...
  • 1 篇 nanjing univ pos...
  • 1 篇 univ sci & techn...
  • 1 篇 univ austral sed...
  • 1 篇 amrita vishwa vi...
  • 1 篇 deakin univ sch ...
  • 1 篇 asia univ inst i...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 univ kebangsaan ...

作者

  • 4 篇 yin feng
  • 4 篇 jiao licheng
  • 4 篇 li yangyang
  • 3 篇 kundroo majid
  • 3 篇 chandrashekaran ...
  • 3 篇 yedida rahul
  • 3 篇 lu gao
  • 3 篇 hoos holger h.
  • 3 篇 kim taehong
  • 3 篇 liu guangyuan
  • 3 篇 menzies tim
  • 3 篇 mu pan
  • 2 篇 zeng shangzhi
  • 2 篇 akay bahriye
  • 2 篇 wang ran
  • 2 篇 jun zhang
  • 2 篇 bai cong
  • 2 篇 kus zeki
  • 2 篇 li yuqi
  • 2 篇 vukovic maja

语言

  • 179 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"主题词=hyper-parameter optimization"
190 条 记 录,以下是81-90 订阅
排序:
Efficient benchmarking of algorithm configurators via model-based surrogates
收藏 引用
MACHINE LEARNING 2018年 第1期107卷 15-41页
作者: Eggensperger, Katharina Lindauer, Marius Hoos, Holger H. Hutter, Frank Leyton-Brown, Kevin Univ Freiburg Freiburg Germany Univ British Columbia Vancouver BC Canada
The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. However, the pro... 详细信息
来源: 评论
Reliable adaptive distributed hyperparameter optimization (RadHPO) for deep learning training and uncertainty estimation
收藏 引用
JOURNAL OF SUPERCOMPUTING 2023年 第10期79卷 10677-10690页
作者: Li, John Pantoja, Maria Fernandez-Escribano, Gerardo Univ Calif San Diego Math & Comp Sci 9500 Gilman Dr San Diego CA 92093 USA CalPoly Comp Sci & Software Engn 1 Grand Ave San Luis Obispo CA 93407 USA Univ Castilla La Mancha CLM Comp Syst Ave Espana S-N Albacete 02071 Spain
Training and validation of Neural Networks (NN) are very computationally intensive. In this paper, we propose a distributed system based NN infrastructure that achieves two goals: to accelerate model training, specifi... 详细信息
来源: 评论
Demystifying Impact of Key hyper-parameters in Federated Learning: A Case Study on CIFAR-10 and FashionMNIST
收藏 引用
IEEE ACCESS 2024年 12卷 120570-120583页
作者: Kundroo, Majid Kim, Taehong Chungbuk Natl Univ Sch Informat & Commun Engn Cheongju 28644 South Korea
Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving distributed Machine Learning (ML), enabling model training across distributed devices without compromising data privacy. However, the ... 详细信息
来源: 评论
A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2022年 第5期33卷 1483-1502页
作者: Wang, Yu Zhang, Mingkai Tang, Xiaowei Peng, Fangyu Yan, Rong Huazhong Univ Sci & Technol Sch Mech Sci & Engn Natl NC Syst Engn Res Ctr Wuhan 430074 Peoples R China
Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to vibration-related problems;chatter, which affects machining quality and efficiency, is more... 详细信息
来源: 评论
An EnKF-based scheme to optimize hyper-parameters and features for SVM classifier
收藏 引用
PATTERN RECOGNITION 2017年 第0期62卷 202-213页
作者: Ji, Yingsheng Chen, Yushu Fu, Haohuan Yang, Guangwen Tsinghua Univ Key Lab Earth Syst Modeling Minist Educ Beijing Peoples R China Tsinghua Univ Ctr Earth Syst Sci Beijing Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China
The quality of models built by machine learning algorithms mostly depends on the careful tuning of hyper-parameters and feature weights. This paper introduces a novel scheme to optimize hyper-parameters and features b... 详细信息
来源: 评论
Comparative Research of hyper-parameters Mathematical optimization Algorithms for Automatic Machine Learning in New Generation Mobile Network
收藏 引用
MOBILE NETWORKS & APPLICATIONS 2022年 第3期27卷 928-935页
作者: Zhang, Xiaohang Li, Yuqi Li, Zhengren Beijing Univ Posts & Telecommun Sch Econ & Management Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Modern Post Beijing 100876 Peoples R China
Under the configuration of the new generation communication network, the algorithm based on machine learning has been widely used in network optimization and mobile user behavior prediction. Therefore, the optimizatio... 详细信息
来源: 评论
A General Descent Aggregation Framework for Gradient-Based Bi-Level optimization
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023年 第1期45卷 38-57页
作者: Liu, Risheng Mu, Pan Yuan, Xiaoming Zeng, Shangzhi Zhang, Jin Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116024 Peoples R China Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China Dalian Univ Technol Sch Math Sci Dalian 116024 Peoples R China Univ Hong Kong Dept Math Hong Kang Peoples R China Univ Victoria Dept Math & Stat Victoria BC V8P 5C2 Canada Southern Univ Sci & Technol SUSTech Int Ctr Math Natl Ctr Appl Math Shenzhen Dept Math Shenzhen 518055 Guangdong Peoples R China
In recent years, a variety of gradient-based methods have been developed to solve Bi-Level optimization (BLO) problems in machine learning and computer vision areas. However, the theoretical correctness and practical ... 详细信息
来源: 评论
Optimized Task Scheduling and Virtual Object Management Based on Digital Twin for Distributed Edge Computing Networks
收藏 引用
IEEE ACCESS 2023年 11卷 114790-114810页
作者: Xu, Rongxu Park, Chan-Won Khan, Salabat Jin, Wenquan Moe, Sa Jim Soe Kim, Do Hyeun Jeju Natl Univ Big Data Res Ctr Jeju 63243 South Korea Elect & Telecommun Res Inst Autonomous IoT Res Sect Daejeon 34129 South Korea Elect & Telecommun Res Inst Intelligent Convergence Res Lab Daejeon 34129 South Korea COMSATS Univ Islamabad Dept Comp Sci Attock Campus Attock 43600 Pakistan Yanbian Univ Dept Elect & Commun Engn Yanji 133002 Jilin Peoples R China Jeju Natl Univ Dept Comp Engn Jeju 63243 South Korea
In this paper, we address the challenge of limited resources in Internet of Things (IoT) devices by proposing a solution based on digital twin in distributed edge computing networks. Edge computing is a promising appr... 详细信息
来源: 评论
An Easy, Simple, and Accessible Web-based Machine Learning Platform, SimPL-ML
收藏 引用
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION 2022年 第1期11卷 85-94页
作者: Jang, Seunghun Na, Gyoung S. Lee, Jungho Shin, Jung Ho Kim, Hyun Woo Chang, Hyunju Korea Res Inst Chem Technol KRICT Chem Data Driven Res Ctr Gajeong Ro 141 Daejeon 34114 South Korea Virtual Lab 49Achasan Ro 17 Gil Seoul 04799 South Korea
Most machine learning (ML) platforms used in materials science provide prediction models built using a computational database. However, to provide more practical and accurate material property predictions, it is advan... 详细信息
来源: 评论
Dynamic Stacking ensemble monitoring model of dam displacement based on the feature selection with PCA-RF
收藏 引用
JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING 2022年 第3期12卷 557-578页
作者: Lei, Wei Wang, Jian Hohai Univ Coll Water Conservancy & Hydropower Engn Nanjing 210098 Peoples R China
The factors that affect the prediction accuracy of monitoring models are the selection of environmental features, the optimization of model hyper-parameters, and the robustness of the model itself. For dam systems aff... 详细信息
来源: 评论