咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 29 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 84 篇 工学
    • 54 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 10 篇 软件工程
    • 9 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 4 篇 仪器科学与技术
    • 4 篇 土木工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 机械工程
    • 3 篇 动力工程及工程热...
    • 3 篇 水利工程
    • 3 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 石油与天然气工程
    • 1 篇 化学工程与技术
    • 1 篇 地质资源与地质工...
    • 1 篇 交通运输工程
    • 1 篇 城乡规划学
    • 1 篇 网络空间安全
  • 16 篇 理学
    • 7 篇 统计学(可授理学、...
    • 6 篇 数学
    • 4 篇 生物学
    • 3 篇 化学
    • 3 篇 地球物理学
    • 1 篇 地理学
  • 8 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 农学

主题

  • 92 篇 hyper-parameters
  • 9 篇 deep learning
  • 9 篇 machine learning
  • 8 篇 optimization
  • 5 篇 support vector m...
  • 5 篇 convolutional ne...
  • 4 篇 bayesian optimiz...
  • 4 篇 cnn
  • 3 篇 latent dirichlet...
  • 3 篇 lstm
  • 3 篇 optimisation
  • 3 篇 particle swarm o...
  • 3 篇 swarm intelligen...
  • 3 篇 pso
  • 3 篇 entropy
  • 3 篇 classification
  • 3 篇 genetic algorith...
  • 2 篇 covid-19
  • 2 篇 support vector r...
  • 2 篇 svm

机构

  • 2 篇 beihang univ sch...
  • 2 篇 cna financial il...
  • 2 篇 loyola univ mary...
  • 1 篇 thu dau mot univ...
  • 1 篇 department of wa...
  • 1 篇 univ norte barra...
  • 1 篇 univ fed sao car...
  • 1 篇 school of inform...
  • 1 篇 abv indian inst ...
  • 1 篇 ruhr univ inst d...
  • 1 篇 vellore inst tec...
  • 1 篇 bamidele olumilu...
  • 1 篇 ntropy network c...
  • 1 篇 asia univ coll i...
  • 1 篇 inesc tec porto
  • 1 篇 computer science...
  • 1 篇 inst univ itsa b...
  • 1 篇 shanghai inst te...
  • 1 篇 king abdulaziz u...
  • 1 篇 univ sydney sch ...

作者

  • 3 篇 singh vibhav pra...
  • 3 篇 kumar vinay
  • 3 篇 kalita dhruba jy...
  • 2 篇 graveron-demilly...
  • 2 篇 alfakeh sulhi al...
  • 2 篇 botalb abdelaziz
  • 2 篇 van ormondt d.
  • 2 篇 al-saggaf ubaid ...
  • 2 篇 moinuddin muhamm...
  • 2 篇 popa e.
  • 2 篇 heinz daniel
  • 2 篇 li qiuying
  • 2 篇 de beer r.
  • 2 篇 binkley david
  • 1 篇 umberto scafuri
  • 1 篇 karras d. a.
  • 1 篇 do dinh-thuan
  • 1 篇 islam saiful
  • 1 篇 shabbir zain ali
  • 1 篇 jian wang

语言

  • 87 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"主题词=hyper-parameters"
92 条 记 录,以下是1-10 订阅
排序:
Amelioration of multitudinous classifiers performance with hyper-parameters tuning in elephant search optimization for cardiac arrhythmias detection
收藏 引用
JOURNAL OF SUPERCOMPUTING 2024年 第10期80卷 14848-14924页
作者: Manivannan, Gowri Shankar Babu, C. Ganesh Rajaguru, Harikumar Bannari Amman Inst Technol Sathyamangalam 638401 Tamilnadu India
Detecting cardiac abnormalities promptly is critical for preventing unexpected and premature fatalities. In this research, four types of cardiac arrhythmias such as Ventricular Tachycardia, Premature Ventricular Contr... 详细信息
来源: 评论
BAYESIAN OPTIMIZATION OF hyper-parameters AND REWARD FUNCTION IN DEEP REINFORCEMENT LEARNING: APPLICATION TO BEHAVIOR LEARNING OF MOBILE ROBOT
收藏 引用
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 2025年 第2期21卷 469-480页
作者: Nishimura, Takuto Sota, Ryosuke Horiuchi, Tadashi Matsue Coll Natl Inst Technol Adv Engn Fac 14-4 Nishi Ikuma Matsue Shimane 6908518 Japan Nara Inst Sci & Technol Grad Sch Sci & Technol 8916-5 Takayama Cho Ikoma Nara 6300192 Japan
. Deep reinforcement learning is a machine learning method that combines deep learning and reinforcement learning. Deep Q-Network (DQN) is one of the typical methods of deep reinforcement learning. DQN uses Convolutio... 详细信息
来源: 评论
A lightweight knowledge-based PSO for SVM hyper-parameters tuning in a dynamic environment
收藏 引用
JOURNAL OF SUPERCOMPUTING 2023年 第16期79卷 18777-18799页
作者: Kalita, Dhruba Jyoti Singh, Vibhav Prakash Kumar, Vinay Natl Inst Technol Dept Comp Sci & Engn Jamshedpur India Motilal Nehru Natl Inst Technol Allahabad Dept Comp Sci & Engn Prayagraj India
hyper-parameter optimization is a crucial task for designing kernel-based machine learning models. Their values can be set by using various optimization algorithms. But a data-dependent objective function makes hyper-... 详细信息
来源: 评论
Constraints on hyper-parameters in Deep Learning Convolutional Neural Networks
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2022年 第11期13卷 439-449页
作者: Al-Saggaf, Ubaid M. Botalb, Abdelaziz Faisal, Muhammad Moinuddin, Muhammad Alsaggaf, Abdulrahman U. Alfakeh, Sulhi Ali King Abdulaziz Univ Electricaland Comp Engn Dept Jeddah 21589 Saudi Arabia King Abdulaziz Univ Ctr Excellence Intelligent Engn Syst CEIES Jeddah 21589 Saudi Arabia King Fahd Univ Petr & Minerals Comp & Informat Technol Dept Dammam Commun Coll Dhahran 31261 Saudi Arabia King Abdulaziz Univ Child & Adolescent Psychiatrist Fac Med Dept Internal Med Jeddah 21589 Saudi Arabia
Neural Network (CNN), a type of Deep Learning, has a very large number of hyper-meters in contrast to the Artificial Neural Network (ANN) which makes the task of CNN training more demanding. The reason why the task of... 详细信息
来源: 评论
A novel adaptive optimization framework for SVM hyper-parameters tuning in non-stationary environment: A case study on intrusion detection system
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2023年 第PartC期213卷
作者: Kalita, Dhruba Jyoti Singh, Vibhav Prakash Kumar, Vinay Dept Comp Sci & Engn Mumbai India Natl Inst Technol Jamshedpur 831014 India Motilal Nehru Natl Inst Technol Allahabad Prayagraj 211004 India
Building an Intrusion Detection System (IDS) in non-stationary environment is challenging because, in such an environment, intrusion-related data grow every day. A machine learning model trained in a stationary envi-r... 详细信息
来源: 评论
Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2020年 166卷 241-254页
作者: Pan, Suoyan Guan, Haiyan Chen, Yating Yu, Yongtao Goncalves, Wesley Nunes Marcato Junior, Jose Li, Jonathan Nanjing Univ Informat Sci & Technol Sch Geog Sci Nanjing 210044 JS Peoples R China Nanjing Univ Informat Sci & Technol Sch Remote Sensing & Geomat Engn Nanjing 210044 JS Peoples R China Suzhou Xiaoqi Informat Technol Co Ltd 162 Renmin South Rd Taicang 215400 Jiangsu Peoples R China Huaiyin Inst Technol Fac Comp & Software Engn Huaian 223003 Peoples R China Univ Fed Mato Grosso do Sul Fac Comp Sci Campo Grande MS Brazil Univ Fed Mato Grosso do Sul Fac Engn Architecture & Urbanism & Geog Campo Grande MS Brazil Univ Waterloo Dept Geog & Environm Management Waterloo ON N2L 3G1 Canada
Multispectral LiDAR (Light Detection And Ranging) is characterized of the completeness and consistency of its spectrum and spatial geometric data, which provides a new data source for land-cover classification. In rec... 详细信息
来源: 评论
SYSTEMATIC ANALYSIS AND AUTOMATED SEARCH OF hyper-parameters FOR CELL CLASSIFIER TRAINING  17
SYSTEMATIC ANALYSIS AND AUTOMATED SEARCH OF HYPER-PARAMETERS...
收藏 引用
17th IEEE International Symposium on Biomedical Imaging Workshops (IEEE ISBI)
作者: Graebel, Philipp Nickel, Gregor Crysandt, Martina Herwartz, Reinhild Baumann, Melanie Klinkhammer, Barbara M. Boor, Peter Bruemmendorf, Tim H. Merhof, Dorit Rhein Westfal TH Aachen Inst Imaging & Comp Vis Aachen Germany Rhein Westfal TH Aachen Univ Hosp Dept Hematol & Oncol Aachen Germany Rhein Westfal TH Aachen Univ Hosp Inst Pathol Aachen Germany
Performance and robustness of neural networks depend on a suitable choice of hyper-parameters, which is important in research as well as for the final deployment of deep learning algorithms. While a manual systematica... 详细信息
来源: 评论
COV Based Classification of PQ Disturbances Using Wavelet and Optimized SVM hyper-parameters
COV Based Classification of PQ Disturbances Using Wavelet an...
收藏 引用
International Conference on Computational Performance Evaluation (ComPE)
作者: Rout, Pritam Chauhan, Abhishek Singh, Ksh Milan NIT Meghalaya Elect Engn Shillong Meghalaya India
This paper presents study of a feature, Coefficient of Variation (COV) based on wavelet transform (WT) for classification of power quality (PQ) disturbances. A five level wavelet decomposition using Db4 wavelet is cho... 详细信息
来源: 评论
Selecting hyper-parameters of Gaussian Process Regression Based on Non-Inertial Particle Swarm Optimization in Internet of Things
收藏 引用
IEEE ACCESS 2019年 7卷 59504-59513页
作者: Kang, Lanlan Chen, Ruey-Shun Xiong, Naixue Chen, Yeh-Cheng Hu, Yu-Xi Chen, Chien-Ming Jiangxi Univ Sci & Technol Coll Appl Sci Gangzhou 341000 Peoples R China Dongguan Polytech Dept Comp Engn Dongguan 523808 Peoples R China Northeastern State Univ Dept Math & Comp Sci Tahlequah OK 74464 USA Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China Univ Calif Davis Dept Comp Sci Davis CA 95616 USA Northwestern Polytech Univ Sch Software & Microelect Xian 710129 Shaanxi Peoples R China Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao 266590 Shandong Peoples R China
Gaussian process regression (GPR) is frequently used for uncertain measurement and prediction of nonstationary time series in the Internet of Things data, nevertheless, the generalization and regression efficacy of GP... 详细信息
来源: 评论
A dynamic framework for tuning SVM hyper parameters based on Moth-Flame Optimization and knowledge-based-search
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 168卷 114139-114139页
作者: Kalita, Dhruba Jyoti Singh, Vibhav Prakash Kumar, Vinay Natl Inst Technol Dept Comp Sci & Engn Jamshedpur 831014 Bihar India Motilal Nehru Natl Inst Technol Dept Comp Sci & Engn Prayagraj 211004 India
In the real world, most of the collections of data are dynamic in nature, i.e. their size may grow with time. This dynamic nature of the data not only reduces the performance of the classifiers but also demands more o... 详细信息
来源: 评论