咨询与建议

限定检索结果

文献类型

  • 760 篇 期刊文献
  • 502 篇 会议
  • 7 篇 学位论文

馆藏范围

  • 1,269 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 934 篇 工学
    • 571 篇 计算机科学与技术...
    • 242 篇 电气工程
    • 117 篇 信息与通信工程
    • 85 篇 控制科学与工程
    • 77 篇 软件工程
    • 61 篇 石油与天然气工程
    • 57 篇 机械工程
    • 54 篇 土木工程
    • 42 篇 航空宇航科学与技...
    • 41 篇 环境科学与工程(可...
    • 38 篇 仪器科学与技术
    • 37 篇 动力工程及工程热...
    • 35 篇 材料科学与工程(可...
    • 28 篇 力学(可授工学、理...
    • 27 篇 生物医学工程(可授...
    • 23 篇 建筑学
    • 23 篇 化学工程与技术
    • 21 篇 水利工程
    • 14 篇 电子科学与技术(可...
    • 14 篇 网络空间安全
  • 199 篇 理学
    • 48 篇 数学
    • 46 篇 物理学
    • 44 篇 生物学
    • 39 篇 化学
    • 26 篇 地球物理学
    • 14 篇 统计学(可授理学、...
  • 108 篇 管理学
    • 96 篇 管理科学与工程(可...
  • 69 篇 医学
    • 32 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 18 篇 农学
  • 7 篇 经济学
  • 7 篇 法学
  • 2 篇 教育学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 1,269 篇 hyperparameter o...
  • 199 篇 machine learning
  • 184 篇 deep learning
  • 144 篇 accuracy
  • 101 篇 optimization
  • 90 篇 training
  • 83 篇 predictive model...
  • 67 篇 bayesian optimiz...
  • 57 篇 neural networks
  • 56 篇 computational mo...
  • 54 篇 feature extracti...
  • 53 篇 convolutional ne...
  • 50 篇 data models
  • 49 篇 tuning
  • 46 篇 machine learning...
  • 39 篇 convolutional ne...
  • 38 篇 automated machin...
  • 36 篇 neural architect...
  • 36 篇 feature selectio...
  • 34 篇 ensemble learnin...

机构

  • 5 篇 natl kaohsiung u...
  • 5 篇 north carolina s...
  • 5 篇 univ elect sci &...
  • 4 篇 oak ridge natl l...
  • 3 篇 school of comput...
  • 3 篇 georgia inst tec...
  • 3 篇 delft univ techn...
  • 3 篇 harbin inst tech...
  • 3 篇 chitkara univers...
  • 3 篇 univ tartu inst ...
  • 3 篇 alibaba grp peop...
  • 3 篇 univ malaya fac ...
  • 3 篇 sakarya univ app...
  • 3 篇 tsinghua univ pe...
  • 3 篇 wright state uni...
  • 3 篇 hohai univ coll ...
  • 3 篇 univ freiburg fr...
  • 3 篇 nha trang univ d...
  • 3 篇 electrical engin...
  • 3 篇 itmo univ 49 kro...

作者

  • 9 篇 hutter frank
  • 9 篇 schmidt-thieme l...
  • 7 篇 menzies tim
  • 6 篇 wu jia
  • 6 篇 chen senpeng
  • 6 篇 zhang yi
  • 5 篇 wistuba martin
  • 5 篇 schilling nicola...
  • 5 篇 lindauer marius
  • 4 篇 sergey muravyov
  • 4 篇 liu xiyuan
  • 4 篇 xia tianpei
  • 4 篇 wang chunnan
  • 4 篇 nga nguyen
  • 4 篇 sakr sherif
  • 4 篇 aritsugi masayos...
  • 4 篇 wang hao
  • 4 篇 wang hongzhi
  • 4 篇 lai-yuen susana ...
  • 4 篇 shu rui

语言

  • 1,218 篇 英文
  • 33 篇 其他
  • 2 篇 法文
  • 2 篇 中文
检索条件"主题词=hyperparameter optimization"
1269 条 记 录,以下是91-100 订阅
排序:
hyperparameter optimization on Machine Learning Models for Twitter Sentiment Analysis of Indonesia’s New Capital (IKN)
Hyperparameter Optimization on Machine Learning Models for T...
收藏 引用
IEEE International Conference on Communication, Networks and Satellite (ComNetSat)
作者: Rangga Dipta Azhari Muljono Faculty of Computer Science Dian Nuswantoro University Semarang Central Java Indonesia
The development of Indonesia’s New Capital (IKN) is a national strategic project of Indonesia that has sparked various discussions and debates in society. Sentiment analysis of Twitter data can provide a more compreh... 详细信息
来源: 评论
Deep Learning Algorithms and Parallel Distributed Computing Techniques for High-Resolution Load Forecasting Applying hyperparameter optimization
收藏 引用
IEEE SYSTEMS JOURNAL 2022年 第3期16卷 3758-3769页
作者: Parizad, Ali Hatziadoniu, Constantine Southern Illinois Univ Dept Elect & Comp Engn Carbondale IL 62901 USA Virginia Tech Natl Capital Region Adv Res Inst ARI 900 North Glebe Rd Arlington VA 22203 USA
Electrical load forecasting is one of the critical tasks that helps power utility companies in planning and operation as well as the energy management system (EMS) in controlling and optimizing the power grid's pe... 详细信息
来源: 评论
hyperparameter optimization in Deep Learning-Based Object Detection of Branching and Endpoints on 2D Brain Vessel Images
Hyperparameter Optimization in Deep Learning-Based Object De...
收藏 引用
Innovations in Intelligent Systems and Applications Conference
作者: Samet Kaya Berna Kiraz Ali Yılmaz Çamurcu Department of Software Engineering Fatih Sultan Mehmet Vakif University Istanbul Turkiye Department of Computer Engineering Fatih Sultan Mehmet Vakif University Istanbul Turkiye
This work presents a deep learning-based object detection technique for identifying branches and endpoints in two-dimensional brain vessel images alongside its hyperparame- ter optimization. Although traditional image... 详细信息
来源: 评论
SMAC3: A Versatile Bayesian optimization Package for hyperparameter optimization
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-9页
作者: Lindauer, Marius Eggensperger, Katharina Feurer, Matthias Biedenkapp, Andre Deng, Difan Benjamins, Carolin Ruhkopf, Tim Sass, Rene Hutter, Frank Leibniz Univ Hannover Hannover Germany Univ Freiburg Freiburg Germany Bosch Ctr Artificial Intelligence Renningen Germany
Algorithm parameters, in particular hyperparameters of machine learning algorithms, can substantially impact their performance. To support users in determining well-performing hyperparameter configurations for their a... 详细信息
来源: 评论
An automatic hyperparameter optimization DNN model for precipitation prediction
收藏 引用
APPLIED INTELLIGENCE 2022年 第3期52卷 2703-2719页
作者: Peng, Yuzhong Gong, Daoqing Deng, Chuyan Li, Hongya Cai, Hongguo Zhang, Hao Nanning Normal Univ Sch Comp & Informat Engn Nanning 530001 Peoples R China Fudan Univ Coll Comp Sci & Technol Shanghai 200433 Peoples R China Shangqiu Univ Appl Sci & Technol Coll Dept Sci Kaifeng 475000 Peoples R China Guangxi Coll Educ Dept Math & Comp Sci Nanning 530023 Peoples R China
Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with... 详细信息
来源: 评论
DeepQGHO: Quantized Greedy hyperparameter optimization in Deep Neural Networks for on-the-Fly Learning
收藏 引用
IEEE ACCESS 2022年 10卷 6407-6416页
作者: Chowdhury, Anjir Ahmed Hossen, Md Abir Azam, Md Ali Rahman, Md Hafizur Amer Int Univ Bangladesh Dept Comp Sci Dhaka 1229 Bangladesh Univ South Carolina Comp Sci & Engn Dept Columbia SC 29208 USA South Dakota Sch Mines & Technol Dept Elect Engn Rapid City SD 57701 USA
On-the-fly learning is unavoidable for applications that demand instantaneous deep neural network (DNN) training or where transferring data to the central system for training is costly. hyperparameter optimization pla... 详细信息
来源: 评论
SASHA: hyperparameter optimization by Simulated Annealing and Successive Halving  19th
SASHA: Hyperparameter Optimization by Simulated Annealing an...
收藏 引用
19th International Conference on Artificial Intelligence Applications and Innovations (AIAI)
作者: Triepels, Ron Maastricht Univ Tongersestr 53 NL-6211 LM Maastricht Netherlands
Successive halving (SHA) has become popular for hyperparameter optimization since it often yields good results while consuming a considerably lower training budget than traditional brute-force algorithms. Nevertheless... 详细信息
来源: 评论
Battery SOH Estimation Using LSTM with Genetic Algorithm-Based hyperparameter optimization
Battery SOH Estimation Using LSTM with Genetic Algorithm-Bas...
收藏 引用
2024 IEEE Region 10 Conference, TENCON 2024
作者: Ponnambalam, Karthickumar Sivaneasan, B. Sharma, A. Lee, S.S. Chakrabarti, Prasun Newcastle University Singapore Singapore Institute of Technology Singapore Sir Padampat Singhania University India
The effective operation and management of battery-based energy storage devices hinge upon timely assessment of battery health. This paper introduces an optimized deep learning approach utilizing Artificial Neural Netw... 详细信息
来源: 评论
hyperparameter optimization Using Successive Halving with Greedy Cross Validation
收藏 引用
ALGORITHMS 2023年 第1期16卷 17-17页
作者: Soper, Daniel S. Calif State Univ Informat Syst & Decis Sci Dept Fullerton CA 92831 USA
Training and evaluating the performance of many competing Artificial Intelligence (AI)/Machine Learning (ML) models can be very time-consuming and expensive. Furthermore, the costs associated with this hyperparameter ... 详细信息
来源: 评论
TextBrew: Automated Model Selection and hyperparameter optimization for Text Classification
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2022年 第9期13卷 748-754页
作者: Desai, Rushil Shah, Aditya Kothari, Shourya Surve, Aishwarya Shekokar, Narendra Dwarkadas J Coll Engn Dept Comp Engn Mumbai India
In building a machine learning solution, algorithm selection and hyperparameter tuning is the most time-consuming task. Automated Machine Learning is a solution to fully automate the process of finding the best model ... 详细信息
来源: 评论