咨询与建议

限定检索结果

文献类型

  • 760 篇 期刊文献
  • 502 篇 会议
  • 7 篇 学位论文

馆藏范围

  • 1,269 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 934 篇 工学
    • 571 篇 计算机科学与技术...
    • 242 篇 电气工程
    • 117 篇 信息与通信工程
    • 85 篇 控制科学与工程
    • 77 篇 软件工程
    • 61 篇 石油与天然气工程
    • 57 篇 机械工程
    • 54 篇 土木工程
    • 42 篇 航空宇航科学与技...
    • 41 篇 环境科学与工程(可...
    • 38 篇 仪器科学与技术
    • 37 篇 动力工程及工程热...
    • 35 篇 材料科学与工程(可...
    • 28 篇 力学(可授工学、理...
    • 27 篇 生物医学工程(可授...
    • 23 篇 建筑学
    • 23 篇 化学工程与技术
    • 21 篇 水利工程
    • 14 篇 电子科学与技术(可...
    • 14 篇 网络空间安全
  • 199 篇 理学
    • 48 篇 数学
    • 46 篇 物理学
    • 44 篇 生物学
    • 39 篇 化学
    • 26 篇 地球物理学
    • 14 篇 统计学(可授理学、...
  • 108 篇 管理学
    • 96 篇 管理科学与工程(可...
  • 69 篇 医学
    • 32 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 14 篇 特种医学
  • 18 篇 农学
  • 7 篇 经济学
  • 7 篇 法学
  • 2 篇 教育学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 1,269 篇 hyperparameter o...
  • 199 篇 machine learning
  • 184 篇 deep learning
  • 144 篇 accuracy
  • 101 篇 optimization
  • 90 篇 training
  • 83 篇 predictive model...
  • 67 篇 bayesian optimiz...
  • 57 篇 neural networks
  • 56 篇 computational mo...
  • 54 篇 feature extracti...
  • 53 篇 convolutional ne...
  • 50 篇 data models
  • 49 篇 tuning
  • 46 篇 machine learning...
  • 39 篇 convolutional ne...
  • 38 篇 automated machin...
  • 36 篇 neural architect...
  • 36 篇 feature selectio...
  • 34 篇 ensemble learnin...

机构

  • 5 篇 natl kaohsiung u...
  • 5 篇 north carolina s...
  • 5 篇 univ elect sci &...
  • 4 篇 oak ridge natl l...
  • 3 篇 school of comput...
  • 3 篇 georgia inst tec...
  • 3 篇 delft univ techn...
  • 3 篇 harbin inst tech...
  • 3 篇 chitkara univers...
  • 3 篇 univ tartu inst ...
  • 3 篇 alibaba grp peop...
  • 3 篇 univ malaya fac ...
  • 3 篇 sakarya univ app...
  • 3 篇 tsinghua univ pe...
  • 3 篇 wright state uni...
  • 3 篇 hohai univ coll ...
  • 3 篇 univ freiburg fr...
  • 3 篇 nha trang univ d...
  • 3 篇 electrical engin...
  • 3 篇 itmo univ 49 kro...

作者

  • 9 篇 hutter frank
  • 9 篇 schmidt-thieme l...
  • 7 篇 menzies tim
  • 6 篇 wu jia
  • 6 篇 chen senpeng
  • 6 篇 zhang yi
  • 5 篇 wistuba martin
  • 5 篇 schilling nicola...
  • 5 篇 lindauer marius
  • 4 篇 sergey muravyov
  • 4 篇 liu xiyuan
  • 4 篇 xia tianpei
  • 4 篇 wang chunnan
  • 4 篇 nga nguyen
  • 4 篇 sakr sherif
  • 4 篇 aritsugi masayos...
  • 4 篇 wang hao
  • 4 篇 wang hongzhi
  • 4 篇 lai-yuen susana ...
  • 4 篇 shu rui

语言

  • 1,218 篇 英文
  • 33 篇 其他
  • 2 篇 法文
  • 2 篇 中文
检索条件"主题词=hyperparameter optimization"
1269 条 记 录,以下是151-160 订阅
排序:
A comparative analysis of ensemble learning algorithms with hyperparameter optimization for soil liquefaction prediction
收藏 引用
ENVIRONMENTAL EARTH SCIENCES 2024年 第9期83卷 289-289页
作者: Demir, Alparslan Serhat Kurnaz, Talas Fikret Koekcam, Abdullah Hulusi Erden, Caner Dagdeviren, Ugur Sakarya Univ Fac Engn Dept Ind Engn Sakarya Turkiye Mersin Univ Tech Sci Vocat Sch Transportat Serv Mersin Turkiye Sakarya Univ Appl Sci AI Res & Applicat Ctr Sakarya Turkiye Kutahya Dumlupinar Univ Fac Engn Dept Civil Engn Kutahya Turkiye Sakarya Univ Appl Sci Fac Technol Dept Comp Engn Sakarya Turkiye
Accurate prediction of soil liquefaction potential is crucial for evaluating the stability of structures in earthquake regions. This study focuses on predicting soil liquefaction using a dataset that included historic... 详细信息
来源: 评论
Deep learning hyperparameter optimization: Application to electricity and heat demand prediction for buildings
收藏 引用
ENERGY AND BUILDINGS 2023年 第1期289卷
作者: Morteza, Azita Yahyaeian, Amir Abbas Mirzaeibonehkhater, Marzieh Sadeghi, Sina Mohaimeni, Ali Taheri, Saman Stevens Inst Technol Dept Civil Environm & Ocean Engn 1 Castle Point Terrace Hoboken NJ 07030 USA Indiana Univ Purdue Univ Purdue Sch Engn & Technol Dept Mech Engn Indianapolis IN 46202 USA Indiana Univ Purdue Univ Purdue Sch Engn & Technol Dept Mech Engn Indianapolis IN 46202 USA North Carolina State Univ Dept Chem & Biomol Engn Raleigh NC 27695 USA Isfahan Univ Technol Dept Chem Engn Esfahan *** Iran
Optimal planning and operation studies of modern energy systems are tied up with medium to long-term predictions of energy demand. Deep learning algorithms have recently become significantly useful in this regard beca... 详细信息
来源: 评论
Towards Efficient Multiobjective hyperparameter optimization: A Multiobjective Multi-fidelity Bayesian optimization and Hyperband Algorithm  17th
Towards Efficient Multiobjective Hyperparameter Optimization...
收藏 引用
17th International Conference on Parallel Problem Solving from Nature (PPSN)
作者: Chen, Zefeng Zhou, Yuren Huang, Zhengxin Xia, Xiaoyun Sun Yat Sen Univ Sch Artificial Intelligence Zhuhai 519082 Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Youjiang Med Univ Nationalities Dept Comp Sci Baise 533000 Peoples R China Jiaxing Univ Coll Informat Sci & Engn Jiaxing 314001 Peoples R China
Developing an efficient solver for hyperparameter optimization (HPO) can help to support the environmental sustainability of modern AI. One popular solver for HPO problems is called BOHB, which attempts to combine the... 详细信息
来源: 评论
Language-independent hyperparameter optimization based speech emotion recognition system
收藏 引用
International Journal of Information Technology (Singapore) 2022年 第7期14卷 3691-3699页
作者: Thakur, Anuja Dhull, Sanjeev Kumar Guru Jambheshwar University of Science and Technology Hisar 125001 India
Speech emotion recognition is challenging due to substantially overlapping regions of emotions. Extracting desired features that influence emotions in a speech and categorizing these emotions is a tedious task. We int... 详细信息
来源: 评论
Budget-Aware Scheduling for hyperparameter optimization Process in Cloud Environment  21st
Budget-Aware Scheduling for Hyperparameter Optimization Proc...
收藏 引用
21st International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
作者: Yao, Yan Yu, Jiguo Cao, Jian Liu, Zengguang Qilu Univ Technol Sch Comp Sci & Technol Shandong Acad Sci Jinan Peoples R China Qilu Univ Technol Big Data Inst Shandong Acad Sci Jinan Peoples R China Shandong Lab Comp Networks Jinan Peoples R China Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China Shandong Univ Sci & Technol Coll Comp Sci & Engn Qingdao Peoples R China
hyperparameter optimization, as a necessary step for majority machine learning models, is crucial to achieving optimal model performance. Unfortunately, the process of hyperparameter optimization is usually computatio... 详细信息
来源: 评论
A conjugated evolutionary algorithm for hyperparameter optimization
A conjugated evolutionary algorithm for hyperparameter optim...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Japa, Luis Serqueira, Marcello Mendonca, Israel Bezerra, Eduardo Aritsugi, Masayoshi Gonzalez, Pedro Henrique Kumamoto Univ Grad Sch Sci & Technol Kumamoto Japan Fed Ctr Technol Educ Rio de Janeiro Dept Comp Sci Rio De Janeiro Brazil Kumamoto Univ Fac Adv Sci & Technol Kumamoto Japan
With the recent upsurge in the use of deep learning and other computationally expensive machine learning models, hyperparameter optimization has become a quite important and widely researched area of study. Genetic al... 详细信息
来源: 评论
Regularized boosting with an increasing coefficient magnitude stop criterion as meta-learner in hyperparameter optimization stacking ensemble
收藏 引用
NEUROCOMPUTING 2023年 第1期551卷
作者: Fdez-Diaz, Laura Quevedo, Jose Ramon Montanes, Elena Global R&D ArcelorMittal Calle Marineros 4 Aviles 33490 Asturias Spain Univ Oviedo Artificial Intelligence Ctr Gijon 33204 Asturias Spain Edificio Departamental Oeste N 1 Despacho 1 B 12C Gijon 33204 Asturias Spain
hyperparameter optimization (HPO) aims to tune hyperparameters for a system in order to improve the predictive performance. Typically, only the hyperparameter configuration with the best performance is chosen after pe... 详细信息
来源: 评论
A surrogate-assisted highly cooperative coevolutionary algorithm for hyperparameter optimization in deep convolutional neural networks
收藏 引用
APPLIED SOFT COMPUTING 2023年 147卷
作者: Chen, An Ren, Zhigang Wang, Muyi Chen, Hui Leng, Haoxi Liu, Shuai Xi An Jiao Tong Univ Sch Automat Sci & Engn Xian Peoples R China Xi An Jiao Tong Univ Sch Automat Sci & Engn 28 Xianning West Rd Xian 710049 Shaanxi Peoples R China
hyperparameter optimization in convolutional neural networks (CNNs) plays a vital role in ensuring the effectiveness of the models. However, with the depth of the existing CNN expanding, this task becomes very challen... 详细信息
来源: 评论
How to Better Distinguish Security Bug Reports (Using Dual hyperparameter optimization)
收藏 引用
EMPIRICAL SOFTWARE ENGINEERING 2021年 第3期26卷 1-37页
作者: Shu, Rui Xia, Tianpei Chen, Jianfeng Williams, Laurie Menzies, Tim North Carolina State Univ Dept Comp Sci Raleigh NC 27695 USA
Background In order that the general public is not vulnerable to hackers, security bug reports need to be handled by small groups of engineers before being widely discussed. But learning how to distinguish the securit... 详细信息
来源: 评论
Coverage-Based Designs Improve Sample Mining and hyperparameter optimization
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021年 第3期32卷 1241-1253页
作者: Muniraju, Gowtham Kailkhura, Bhavya Thiagarajan, Jayaraman J. Bremer, Peer-Timo Tepedelenlioglu, Cihan Spanias, Andreas Arizona State Univ Sch Elect Comp & Energy Engn Tempe AZ 85287 USA Lawrence Livermore Natl Lab Ctr Appl Sci Comp Livermore CA 94550 USA
Sampling one or more effective solutions from large search spaces is a recurring idea in machine learning (ML), and sequential optimization has become a popular solution. Typical examples include data summarization, s... 详细信息
来源: 评论