A depth-dependent dispersion compensation algorithm for enhancing the image quality of the Fourier-domain optical coherence tomography (OCT) is presented. The dispersion related with depth in the sample is considered....
详细信息
A depth-dependent dispersion compensation algorithm for enhancing the image quality of the Fourier-domain optical coherence tomography (OCT) is presented. The dispersion related with depth in the sample is considered. Using the iterative method, an analytical formula for compensating the depth-dependent dispersion in the sample is obtained. We apply depth-dependent dispersion compensation algorithm to process the phantom images and in vivo images. Using sharpness metric based on variation coefficient to compare the results processed with different dispersion compensation algorithms, we find that the depth-dependent dispersion compensation algorithm can improve image quality at full depth. (C) 2017 Optical Society of America
Fractional Bessel-Gauss light-sheets [J. Opt. 19, 055602 ( 2017)], which correspond to finite optical "slices" in 2D and possess asymmetric slit openings and bending characteristics, are examined from the st...
详细信息
Fractional Bessel-Gauss light-sheets [J. Opt. 19, 055602 ( 2017)], which correspond to finite optical "slices" in 2D and possess asymmetric slit openings and bending characteristics, are examined from the standpoint of optical radiation force and spin torque theories for a subwavelength spheroid with arbitrary orientation in space. The vector angular spectrum decomposition method in addition to the Lorenz gauge condition and Maxwell's equations are used to determine the Cartesian components of the incident radiated electric field of the Bessel-Gauss light-sheets. In the framework of the dipole approximation, the numerical results for the Cartesian components of the optical radiation force and spin torque vectors show that negative forces ( oriented in the opposite direction of wave motion) and spin torques arise depending on the beam parameters, the orientation of the subwavelength spheroid in 3D space, and its aspect ratio (i.e., prolate versus oblate). The spin torque sign reversal reveals that counter-clockwise or clockwise rotations around the center of mass of the spheroid can occur. The results find important applications in the application of auto-focusing light-sheets in particle manipulation, rotation, and optical sorting devices. (C) 2017 Optical Society of America
In this paper, eddy current pulsed thermography was used to evaluate ballistic impact damages in basalt-carbon hybrid fiber-reinforced polymer composite laminates for the first time, to our knowledge. In particular, d...
详细信息
In this paper, eddy current pulsed thermography was used to evaluate ballistic impact damages in basalt-carbon hybrid fiber-reinforced polymer composite laminates for the first time, to our knowledge. In particular, different hybrid structures including intercalated stacking and sandwich-like sequences were used. Pulsed phase thermography, wavelet transform, principle component thermography, and partial least-squares thermography were used to process the thermographic data. Ultrasound C-scan testing and X-ray computed tomography were also performed for comparative purposes. Finite element analysis was used for validation. Finally, an analytical and comparative study was conducted based on signal-to-noise ratio analysis. (C) 2018 Optical Society of America
A perceptually uniform color space has been long desired for a wide range of imaging applications. Such a color space should be able to represent a color pixel in three unique and independent attributes (lightness, ch...
详细信息
A perceptually uniform color space has been long desired for a wide range of imaging applications. Such a color space should be able to represent a color pixel in three unique and independent attributes (lightness, chroma, and hue). Such a space would be perceptually uniform over a wide gamut, linear in iso-hue directions, and can predict both small and large color differences as well as lightness in high dynamic range environments. It would also have minimum computational cost for real time or quasi-real time processing. Presently available color spaces are not able to achieve these goals satisfactorily and comprehensively. In this study, a uniform color space is proposed and its performance in predicting a wide range of experimental data is presented in comparison with the other state of the art color spaces. (C) 2017 Optical Society of America
The pyramid wavefront sensor (PWFS) is a novel wavefront sensor with several inspiring advantages compared with Shack-Hartmann wavefront sensors. The PWFS uses four pupil images to calculate the local tilt of the inco...
详细信息
The pyramid wavefront sensor (PWFS) is a novel wavefront sensor with several inspiring advantages compared with Shack-Hartmann wavefront sensors. The PWFS uses four pupil images to calculate the local tilt of the incoming wavefront. Pupil images are conjugated with a telescope pupil so that each pixel in the pupil image is diffraction-limited by the telescope pupil diameter, thus the sensing error of the PWFS is much lower than that of the Shack-Hartmann sensor and is related to the extraction and alignment accuracy of pupil images. However, precise extraction of these images is difficult to conduct in practice. Aiming at improving the sensing accuracy, we analyzed the physical model of calibration of a PWFS and put forward an extraction algorithm. The process was verified via a closed-loop correction experiment. The results showed that the sensing accuracy of the PWFS increased after applying the calibration and extraction method. (c) 2017 Optical Society of America
Quality of three-dimensional (3D) autostereoscopic displays is mainly influenced by the mismatch between the optical apparatus setups and image generation algorithms. In this paper, we take the optical apparatus setup...
详细信息
Quality of three-dimensional (3D) autostereoscopic displays is mainly influenced by the mismatch between the optical apparatus setups and image generation algorithms. In this paper, we take the optical apparatus setups into consideration and present an accurate 3D autostereoscopic display method using optimized parameters through quantitative calibration. Rotational and translational alignments are operated quantitatively to rectify the optical apparatus. In addition, the main parameters in a 3D display are evaluated for accurate 3D image rendering. Using the proposed method, the 3D autostereoscopic display can be calibrated quantitatively and provide 3D images with accurate spatial information. Experiments verified the availability and feasibility of the proposed method. (C) 2017 Optical Society of America
Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a mul...
详细信息
Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography. (C) 2017 Optical Society of America
Recent developments in optoelectronics and material processing techniques make it possible to design and produce a portable and compact measurement instrument for bidirectional texture function (BTF). Parallelized opt...
详细信息
Recent developments in optoelectronics and material processing techniques make it possible to design and produce a portable and compact measurement instrument for bidirectional texture function (BTF). Parallelized optics, on-board data processing, rapid prototyping, and other nonconventional production techniques and materials were the key to building an instrument capable of in situ measurements with fast data acquisition. We designed, built, and tested a prototype of a unique portable and compact multi-camera system for BTF measurement which is capable of in situ measurement of temporally unstable samples. In this paper, we present its optomechanical design. (C) 2017 Optical Society of America
We propose and experimentally demonstrate lensless complex amplitude image retrieval through a visually opaque scattering medium from spatially fluctuating fields using intensity measurement and a phase-retrieval algo...
详细信息
We propose and experimentally demonstrate lensless complex amplitude image retrieval through a visually opaque scattering medium from spatially fluctuating fields using intensity measurement and a phase-retrieval algorithm. The complex amplitude information of the hidden object is encoded in the form of a real and non-negative amplitude function represented as an interference pattern. A single charge coupled device (CCD) image of the scattered light collected through a visually opaque optical diffuser contains enough information to digitally regenerate the interference pattern. Furthermore, a lensless configuration is implemented which eliminates any possible aberration effects associated with optical components, and this further has promising applications where the use of imaging optics is not feasible. Experimental results for the recovery of complex fields corresponding to optical vortices of two different topological charges are presented. (C) 2017 Optical Society of America
The simultaneous and independent measurements of in-plane and out-of-plane displacements are significant issues to be solved in research. Here a novel system to realize single-spot two-dimensional (2D) displacement me...
详细信息
The simultaneous and independent measurements of in-plane and out-of-plane displacements are significant issues to be solved in research. Here a novel system to realize single-spot two-dimensional (2D) displacement measurement of a noncooperative target is reported. The performance of the system is tested in the displacement measurement of an aluminum target with a rough surface. 2D random movement and 2D movement with different parameters of Lissajous figures are measured by the system. The ranges of the 2D displacement measurement reach 500 mu m and the accuracies reach the submicron scale. The resolutions of the two dimensions are all better than 5 nm. The measurement system is based on laser heterodyne self-mixing interferometry with frequency multiplexing, which has advantages such as noncontact, nondestruction, nanometer-scale resolution and high sensitivity. The method is promising to be applied in 2D deformation tests of materials, 2D rotor vibration measurement, 2D positioning of particles, thermal expansion coefficient measurement, and other applications. (C) 2017 Optical Society of America
暂无评论