咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 7 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 特种医学
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 理学
    • 1 篇 物理学

主题

  • 15 篇 image source ide...
  • 4 篇 digital image fo...
  • 2 篇 support vector m...
  • 2 篇 forgery detectio...
  • 2 篇 natural images
  • 2 篇 machine learning
  • 2 篇 genetic algorith...
  • 2 篇 feature selectio...
  • 2 篇 digital forensic...
  • 1 篇 internet of thin...
  • 1 篇 mega-trend-diffu...
  • 1 篇 vignetting
  • 1 篇 ensemble learnin...
  • 1 篇 photo-realistic ...
  • 1 篇 random subspace ...
  • 1 篇 regression analy...
  • 1 篇 computer-generat...
  • 1 篇 lateral chromati...
  • 1 篇 lacunarity analy...
  • 1 篇 forensic science

机构

  • 2 篇 tech univ dresde...
  • 2 篇 changsha univ sc...
  • 2 篇 hunan univ coll ...
  • 1 篇 beijing inst tec...
  • 1 篇 chinese acad sci...
  • 1 篇 dalian univ tech...
  • 1 篇 hunan univ sch c...
  • 1 篇 dalian univ tech...
  • 1 篇 changsha univ sc...
  • 1 篇 natl drug headqu...
  • 1 篇 dalian univ tech...
  • 1 篇 acad sci czech r...
  • 1 篇 univ technol syd...
  • 1 篇 inst criminalist...
  • 1 篇 changsha univ sc...
  • 1 篇 swinburne univ t...
  • 1 篇 korea adv inst s...
  • 1 篇 deakin univ sch ...
  • 1 篇 jaypee univ info...
  • 1 篇 hunan univ sch c...

作者

  • 3 篇 peng fei
  • 3 篇 long min
  • 2 篇 gloe thomas
  • 1 篇 sima zdenek
  • 1 篇 pan lei
  • 1 篇 cheng-liang lai
  • 1 篇 conotter v.
  • 1 篇 liu yuying
  • 1 篇 chen jiaxin
  • 1 篇 saic stanislav
  • 1 篇 lee heung-kyu
  • 1 篇 huang yonggang
  • 1 篇 novozamsky adam
  • 1 篇 zhou die-lan
  • 1 篇 zhu yin
  • 1 篇 fischer andre
  • 1 篇 chen yi-shiang
  • 1 篇 svarc petr
  • 1 篇 winkler antje
  • 1 篇 zitova barbara

语言

  • 14 篇 英文
  • 1 篇 其他
检索条件"主题词=image source identification"
15 条 记 录,以下是1-10 订阅
排序:
A hybrid data fusion approach with twin CNN architecture for enhancing image source identification in IoT environment
收藏 引用
COMPUTATIONAL INTELLIGENCE 2024年 第2期40卷 e12631-e12631页
作者: Singh, Surjeet Sehgal, Vivek Kumar Jaypee Univ Informat Technol Dept Comp Sci & Engn & Informat Technol Solan Himachal Prades India
With the proliferation of digital devices in internet of things (IoT) environment featuring advanced visual capabilities, the task of image source identification (ISI) has become increasingly vital for legal purposes,... 详细信息
来源: 评论
Virtual Sample Generation and Ensemble Learning Based image source identification With Small Training Samples
收藏 引用
INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS 2021年 第3期13卷 34-46页
作者: Wu, Shiqi Wang, Bo Zhao, Jianxiang Zhao, Mengnan Zhong, Kun Guo, Yanqing Dalian Univ Technol Sch Informat & Commun Engn Dalian Liaoning Peoples R China Dalian Univ Technol Fac Management & Econ Dalian Liaoning Peoples R China Dalian Univ Technol Elect Informat Engn Dalian Liaoning Peoples R China Dalian Univ Technol Dalian Liaoning Peoples R China Dalian Univ Technol Fac Elect Informat & Elect Engn Dalian Liaoning Peoples R China
Nowadays, source camera identification, which aims to identify the source camera of images, is quite important in the field of forensics. There is a problem that cannot be ignored that the existing methods are unrelia... 详细信息
来源: 评论
image source identification with known post-processed based on convolutional neural network
收藏 引用
SIGNAL PROCESSING-image COMMUNICATION 2021年 99卷 116438-116438页
作者: Liao, Xin Chen, Jing Chen, Jiaxin Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Peoples R China Chinese Acad Sci Inst Informat Engn State Key Lab Informat Secur Beijing 100093 Peoples R China
image source identification is important to verify the origin and authenticity of digital images. However, when images are altered by some post-processing, the performance of the existing source verification methods m... 详细信息
来源: 评论
Exploring Feature Coupling and Model Coupling for image source identification
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2018年 第12期13卷 3108-3121页
作者: Huang, Yonggang Cao, Longbing Zhang, Jun Pan, Lei Liu, Yuying Beijing Inst Technol Sch Comp Sci & Technol Beijing Engn Res Ctr High Volume Language Informa Beijing 100081 Peoples R China Univ Technol Sydney Fac Engn & Informat Technol Ultimo NSW 2007 Australia Swinburne Univ Technol Sch Software & Elect Engn Melbourne Vic 3122 Australia Deakin Univ Sch Informat Technol Geelong Vic 3217 Australia
Recently, there has been great interest in feature-based image source identification. Previous statistical learning-based methods usually regarded the identification process as a classification problem. They assumed t... 详细信息
来源: 评论
Identifying natural images and computer generated graphics based on binary similarity measures of PRNU
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第1期78卷 489-506页
作者: Long, Min Peng, Fei Zhu, Yin Changsha Univ Sci & Technol Coll Comp & Commun Engn Changsha 410014 Hunan Peoples R China Changsha Univ Sci & Technol Hunan Prov Key Lab Intelligent Proc Big Data Tran Changsha 410114 Hunan Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China
Aiming at the identification of natural images and computer generated graphics, an image source pipeline forensics method based on binary similarity measures of PRNU (photo response non-uniformity) is proposed. As PRN... 详细信息
来源: 评论
Camera source identification of Digital images Based on Sample Selection
收藏 引用
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS 2018年 第7期12卷 3268-3283页
作者: Wang, Zhihui Wang, Hong Li, Haojie Dalian Univ Technol Econ & Technol Dev Area DUT RU Int Sch Informat & Software Engn Dalian Peoples R China
With the advent of the Information Age, the source identification of digital images, as a part of digital image forensics, has attracted increasing attention. Therefore, an effective technique to identify the source o... 详细信息
来源: 评论
Discrimination of natural images and computer generated graphics based on multi-fractal and regression analysis
收藏 引用
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS 2017年 71卷 72-81页
作者: Peng, Fei Zhou, Die-lan Long, Min Sun, Xing-ming Hunan Univ Sch Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China Changsha Univ Sci & Technol Sch Comp & Commun Engn Changsha 410114 Hunan Peoples R China Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing 210044 Jiangsu Peoples R China
The aim of the work presented in this paper is to discriminate natural images (NI) and computer generated graphics (CG). The texture differences are analyzed to the residual images of NI and CG. The residual images ar... 详细信息
来源: 评论
IDENTIFYING PHOTOREALISTIC COMPUTER GRAPHICS USING CONVOLUTIONAL NEURAL NETWORKS  24
IDENTIFYING PHOTOREALISTIC COMPUTER GRAPHICS USING CONVOLUTI...
收藏 引用
24th IEEE International Conference on image Processing (ICIP)
作者: Yu, In-Jae Kim, Do-Guk Park, Jin-Seok Hou, Jong-Uk Choi, Sunghee Lee, Heung-Kyu Korea Adv Inst Sci & Technol Sch Comp Daejeon South Korea
As computer graphics technology advances, it is becoming increasingly difficult to determine whether a given picture was taken by camera or via computer graphics. In this work, we propose a method to using simple CNN ... 详细信息
来源: 评论
PIZZARO: Forensic analysis and restoration of image and video data
收藏 引用
FORENSIC SCIENCE INTERNATIONAL 2016年 264卷 153-166页
作者: Kamenicky, Jan Bartos, Michal Flusser, Jan Mahdian, Babak Kotera, Jan Novozamsky, Adam Saic, Stanislav Sroubek, Filip Sorel, Michal Zita, Ales Zitova, Barbara Sima, Zdenek Svarc, Petr Horinek, Jan Acad Sci Czech Republ Inst Informat Theory & Automat Vodarenskou Vezi 4 CR-18208 Prague Czech Republic Inst Criminalist Audio Video Dept Prague Czech Republic Natl Drug Headquarters Criminal Police & Invest S Dept Informat Prague Czech Republic
This paper introduces a set of methods for image and video forensic analysis. They were designed to help to assess image and video credibility and origin and to restore and increase image quality by diminishing unwant... 详细信息
来源: 评论
identification of Natural images and Computer-Generated Graphics Based on Statistical and Textural Features
收藏 引用
JOURNAL OF FORENSIC SCIENCES 2015年 第2期60卷 435-443页
作者: Peng, Fei Li, Jiao-ting Long, Min Hunan Univ Sch Comp Sci & Engn Changsha 410082 Hunan Peoples R China ChangSha Univ Sci & Technol Coll Comp & Commun Engn Changsha 410114 Hunan Peoples R China
To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the d... 详细信息
来源: 评论